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Abstract

Humans convey their thoughts, emotions, and intentions through a concert of social displays:
voice, facial expressions, hand gestures, and body posture, collectively referred to as social
signals. Despite advances in machine perception, machines are unable to discern the subtle
and momentary nuances that carry so much of the information and context of human commu-
nication. The encoding of conveyed information by social signals, particularly in nonverbal
communication, is still poorly understood, and thus it is unclear how to teach machines to
use such social signals to make them collaborative partners rather than tools that we use. A
major obstacle to scientific progress in this direction is the inability to sense and measure
the broad spectrum of behavioral cues in groups of interacting individuals, which hinders
applying computational methods to model and understand social signals.

In this thesis, we explore new approaches in sensing, measuring, and modeling social
signals to ultimately endow machines with the ability to interpret nonverbal communica-
tion. This thesis starts by describing our exploration in building a massively multiview
sensor system, the Panoptic Studio, that can capture a broad spectrum of human social
signaling—including voice, social formations, facial expressions, hand gestures, and body
postures—among groups of multiple people. Second, leveraging this system equipped with
more than 500 synchronized cameras, we then present a method to measure the subtle 3D
movements of anatomical keypoints in face-to-face interaction, providing a new opportunity
to computationally study social signals. In the last part of this thesis, we present a social
signal prediction task to model nonverbal communication in a data-driven manner. We
establish a new large-scale corpus from hundreds of participants containing various channels
of social signal measurements. Leveraging this dataset, we verify that the social signals are
predictive each other with strong correlations.
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Chapter 1

Introduction

Along with verbal language, we use many other channels for communication, including facial
expression, body gestures, hand motions, and interpersonal proximity, collectively referred
to as nonverbal social signals. The use of all these channels is important in social interaction,
where subtle emotions and intentions are transmitted via the combination of such signals [1].
Endowing machines with such social interaction abilities is an essential goal of Artificial
Intelligence (AI) to make machines that can effectively cooperate with humans.

One way to endow machines with such social skills would be to encode all the rules that
humans observe during social communication [2, 3]. Unfortunately, nonverbal interaction
is still poorly understood despite its importance in social communication [4–6], making it
hard to formalize all rules about how to understand and use social signals. An alternative
direction of this “symbolic" paradigm [7] is to take the “non-symbolic" (or connectionist)
approach [8] to learn the way humans communicate purely from the data without any
hand-coded high level representations. Interestingly, we have recently witnessed significant
progress in Natural Language Processing (NLP) showing the potential to allow machines to
“freely” communicate with humans using written language and speech [9]. This success has
been led by data-driven approaches leveraging large-scale language datasets and a powerful
modeling tool, deep neural networks [10], to automatically learn the patterns of human verbal
communication. Remarkably, these achievements have not made extensive use of the prior
knowledge about grammar and the structure of languages that linguists have accumulated
over centuries. Motivated by this, this thesis hypothesizes that a similar approach can be an
important breakthrough in modeling nonverbal communication.

However, there exists a fundamental difficulty in building a data-driven nonverbal com-
munication model: the data is extremely rare. In the verbal language domain, words contain
the full expressive power to record verbal signals by a composition of a handful of discrete
symbols. Especially on the Internet, there already exist millions of articles or dialogues which
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are readily usable for data-driven methods (either supervised or unsupervised). However, for
nonverbal signals, how to “record" or collect these signals is uncertain. Imagine a situation
where a group of people are communicating in our daily life. The positions and orientations
of individuals, their body gestures, gaze, and facial expressions (among others) are the data
we are interested in. Notably, these social signals emitted from all people in the group need
to be simultaneously sensed to study their correlation and causality. Although there also exist
millions of videos where our daily activities—including social interactions—are captured on
the Internet, these raw videos cannot be directly used because we have to first measure the
behavioral cues (relative location, face, body pose, and so on) from the raw pixels to focus
on investigating the rules of nonverbal interactions.

This thesis explores two scientific questions to computationally study social signals in
nonverbal communication: (1) how to measure the “a broad spectrum of behavioral social
signals", including facial expressions, hand gestures, and body motions of an interacting
group and (2) how to formalize a “Connectionist" model by leveraging these new types of
signal measurements aiming to teach machines how to decode and encode nonverbal signals
to genuinely interact with humans. As major advancements in science are nearly always
preceded by innovations in engineering that enable us to measure the world, the first part
of this thesis starts by presenting a novel system and method to sense and measure such
signals. As a core contribution, a massively multiview capture system, the Panoptic Studio
shown in the top of Figure 1.2, is built to capture naturally interacting multiple people in
social situations (Chapter 2). Methods to measure the subtle 3D movements of anatomical
landmarks including facial expression, hand gestures, and body motions are also presented,
leveraging a large number of views of the Panoptic Studio System (Chapter 3, 4, and 5).
Our system and method enable us to measure and record the various behavioral cues in
face-to-face interaction without using any intrusive devices or artificial markers.

In the last part of this thesis, we computationally study the dynamics among interpersonal
social signals by leveraging a large-scale social signal corpus built from our system and
measurement method. In this research, we verify that the social signals naturally emerging
in an interacting group are highly correlated and predictive each other. To achieve the goal,
we first collect a large scale dataset where a broad spectrum of social signals are measured
from hundreds of participants in a carefully designed triadic interaction scenario (Chapter 6).
Then, we formalize a social signal prediction problem as a data-driven way to model the
dynamics and correlations between various channels of social signals exchanged during
social interaction (Chapter 7).
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1.1 Key Challenges

This thesis aims to computationally model social interaction, focusing on nonverbal social
signals. Major challenges in pursuing the direction are addressed.

How To Sense Nonverbal Social Signals: To achieve the goal of this thesis, the signals
naturally emerging from interacting people should be obtained first. However, it is challeng-
ing to sense such social signals. Here, we use the term “sensing” as a process to record the
analog signals (human behaviors) existing in the real world to the digital space (videos in
raw pixels) which can be computationally processed afterwards (see Figure 1.1). Ideally,
we pursue to sense the social signals as complete as possible, to reconstruct the original
signals in the digital space. However, sensing social signals exchanged in social interaction
is challenging because of the following reasons. First, during social interactions, strong
occlusions emerge functionally (e.g., people systematically face each other while interacting,
bodies are occluded by gesticulating limbs). Thus, a monocular view or a few camera views
can hardly capture the entire social signals of all the people involved in the communication.
Second, subtle motions from faces and hands that play an important role in social interactions
should be measured together with large motions from torsos and limbs. This introduces a
difficulty because both a large volume and subtle details are sensed together. In existing
methods, often face and hand motions are captured at close range [11–19], while torso and
limb motions are captured in a sufficiently large working volume where people can freely
move, less focusing the subtle details in faces and hands [20–23].

How To Measure Nonverbal Social Signals: Given the sensed data recorded in raw pixel
space, we need to measure social signals by extracting human behavioral cues. Here, we
use the term “measuring” as a process to compute the registered social signals from the raw
pixels, which provides correspondences across time and across individuals. As examples
of the registered social signals, we consider a set of 3D keypoints extracted from each
individual that provide sparse correspondences on anatomical joint locations, and also a 3D
mesh structure that provides dense correspondences on the surface of bodies (see Figure 1.1).
These registered social signals enable us to computationally investigate human behaviors
in social interaction. Importantly, the social signals should be measured non-intrusively
to allow people to behave naturally and voluntarily. Thus, popular marker-based motion
capture systems (e.g., [24]) are not applicable. Despite the advances in human sensing and
markerless motion capture fields in computer vision and graphics, these challenges have not
been fully solved yet. Most of the existing methods prior to this thesis focus on the motion
of a single subject [20, 25, 26, 21, 22, 27, 28] or exaggerated motions of actors [29, 30].
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Importantly, there is no existing system that can track, without markers, the human body, face,
and hands of multiple individuals simultaneously. Due the limit of available measurement
tools, social signals are studied in limited scenarios, for example: (1) studies only focus on
face signals ignoring body motions [31–33]; (2) studies consider situations in a table setup
where participants’ motions are limited [34, 35, 31, 36, 32, 33]; (3) studies assume a small
number of people (mostly dyadic communications) [31, 36, 32, 37, 33, 38].

How To Model Nonverbal Communications: Modeling social signals using computa-
tional methods is a largely unexplored area due to the following four reasons. First, the lack
of available dataset or measurement technology limits the opportunity to computationally
investigate the social signal modeling. Because of this reason, studies on body gestures
are relatively rare [38–40], while many researchers focus on facial expressions exploiting
existing automatic measurement tools [41] with an existing coding system [42]. Similarly,
although we want to investigate the correlation between various behavioral cues (e.g., facial
expression and hand gestures), the challenges in simultaneously measuring these signals
make it hard to explore this direction.

Second, there is no good way to represent and objectively annotate the semantics embed-
ded in social signals. For example, a “smile" signal, formed by flexing the muscles at the side
of the mouth with a contraction of the muscles at the corner of the eyes, may be recognized
as “happiness". However, the internal emotion expressed by the signals may not be simply
annotated by a discrete status of “smile" or “happiness", because it may have a variety of
subtly different meanings depending on the intensity of the facial movements. Importantly,
the mapping between the social signal measurements to the semantic space is subjective to
the observers [43].

Third, the high complexity of social signals that are located in a continuous and high
dimensional space makes the modeling harder. Unlike words, the start and end timing of
social signals are ambiguous. The organized motions from torso, face, and hands need to be
considered together [44, 45]. A social interaction among multiple people (more than two) is
also challenging due to the diversity of interactions. All these challenges make computational
social signal modeling difficult.

Finally, it is unclear how to evaluate the performance of the model. For example, a social
signal prediction model may generate a “realistic" nonverbal signals, but we are lack of
methods to quantify how realistic the output is.
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Fig. 1.1 Thesis overview. We present new approaches in sensing, measuring, and modeling
social signals to ultimately endow machines with nonverbal communication abilities. In the
sensing stage, the analog signals (human behaviors) existing in the real world are recorded
to the digital space (videos in raw pixels). In the measuring stage, we extract the registered
social signals (3D keypoints or 3D meshes) that provide correspondences across time and
across individuals, from raw pixels. Finally, in the modeling stage, we build a function to
mimic the social behaviors of humans in social interaction leveraging a large scale social
signal corpus.

1.2 Thesis Contribution

Thesis statement. We advocate that a broad spectrum of social signals—including the
body gestures, facial expression, and hand motion—of a naturally interacting group can
be measured by a system with a sufficient number of cameras. Based on the measurement,
we also argue that such naturally emerging social signals are predictive each other, and
modeling their dynamics is crucial to enable social Artificial Intelligence.

This thesis presents a “full-stack" framework to apply computational methods to model
nonverbal social communication. The core contribution of thesis spans a new sensor system
to capture interacting multiple people (Chapter 2), a novel methodology to measure a
broad spectrum of social signals (Chapter 3, 4, and 5), a large-scale social interaction
dataset (Chapter 6), and formalizing a predictive model of social signals (Chapter 7). The
core contributions of this thesis are summarized below and example results are shown in
Figure 1.2.
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1.2.1 Panoptic Studio: A Massively Multiview System (Chapter 2)

We built a new sensor system, the Panoptic Studio, specifically designed to overcome
the sensing challenges emerging in social situations. The system is composed of 521
synchronized sensors with different types, including 480 VGA cameras, 31 HD cameras, 10
RGB+D sensors, and 23 microphones. The large number of sensors densely cover a large
capture volume (5.49m of a diameter) sufficient to have multiple people, enabling to relieve
occlusions among interacting people.

We present a novel modularized design architecture to simplify the complexity of the
system. The system is composed of repeated modules with the same shape and architecture,
and each module is controlled by a separate local machine. This modularized design makes it
easy to control and manage the system, and also enables efficient data acquisition by saving
data locally. All cameras are accurately synchronized (or temporally aligned) by a hardware
clock, and spatially calibrated in a common 3D world space. The core design choices and
technical solutions including structural design, architecture, temporal calibration, and spatial
calibration are addressed in Chapter 2.

1.2.2 Measuring 3D Social Signals (Chapters 3, 4, 5)

We present the first method to measure a broad spectrum of 3D social signals including
subtle motions from body, face, and hands. The core goals in developing the methods are:
(1) simultaneously capturing the total body motion of all body parts when a group of people
are naturally interacting; (2) building a fully automatic method to capture social sequences
at scale without human labor; (3) minimizing assumptions about scenes to be applicable in
any type of motion and appearance of arbitrary number of people; and (4) avoiding intrusive
approaches, such as attaching artificial markers and avoiding a tedious 3D template building
step. To this end, we present a method based on “weak” perceptual processes from a large
number of views, and robustly measure social signals by satisfying the aforementioned
principles. In Chapter 3, a method to reconstruct dense surface movements, which we refer
to as a “trajectory stream", is presented by fusing optical flow cues from the large number of
views in 3D. The core challenge of the method is to reason about a time varying visibility
to fully exploiting the large number of views. In Chapter 4, reconstructing the movement
of 3D anatomical landmarks is presented. In this method, we run 2D keypoint detectors
for body, face, and hands respectively in each view, and fuse them in 3D to reconstruct 3D
locations of anatomical landmarks. By associating them with the trajectory stream, we obtain
accurate markerless motion capture results, as well as semantic labeling of the trajectory
stream. In Chapter 5, we present a novel 3D deformable human body model for total body
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motion capture, which can express the motions from full body including facial expression
and hand gestures in a unified parametric space.

1.2.3 A Large-Scale Human Motion Database (Chapter 6)

We build a large-scale dataset by capturing face-to-face interactions of hundreds of par-
ticipants in our Panoptic Studio. The scenes are captured in a carefully designed triadic
negotiation scenario, referred to as Haggling, where voluntary social behaviors can naturally
emerge. This social scenario makes it easier to model social interaction, by putting all the
subjects in the same social situation. The various behavioral cues including facial expres-
sions, body motions, hand gestures, and individual voices, are sensed and measured by our
markerless motion capture system.

Along with the social game dataset, we also use our system to capture other motions
to build a large-scale 3D human motion database. Our database contributes to invent new
computer vision techniques. For example, our dataset enables us to build a popular hand
keypoint detector [46] in the OpenPose Library [47], the first deformable 3D human model for
total motion capture [48], and the first monocular 3D human total capture method applicable
in-the-wild [49]. Importantly, we publicly released our dataset in our database website1.

1.2.4 Formalizing Social Signal Prediction To Model Nonverbal Inter-
actions (Chapter 7)

We introduce a Social Signal Prediction task as a way to computationally model nonverbal
interaction. The objective of this task is to predict the behavior of a target person in a social
situation. We hypothesize and verify that a target person’s behavior is strongly correlated
to the behavioral cues of other individuals. For example, the location and orientation of
the target person should be strongly affected by the position of conversational partners
(known as Proxemics [50] and F-formation [51]), and the gaze direction, body gestures, and
facial expressions of the target person should also be “conditioned" by the behaviors of the
conversational partners. In this social signal prediction task, we model the dynamics of social
signals exchanged during social interaction, to ultimately teach a robot how to behave in
a similar social situation. In Chapter 7, we present several subtasks in modeling a subset
of social signals among subject involved in social interaction, and demonstrate their social
signals are predictive.

1http://domedb.perception.cs.cmu.edu

http://domedb.perception.cs.cmu.edu
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The relevant publication list for this thesis is as follows:

• (Chapter 2) DIY A Multiview Camera System: Panoptic Studio Teardown, in conjunc-
tion with CVPR 2017 (Tutorial Page)

• (Chapters 2 and 4) Panoptic Studio: A Massively Multiview System for Social Motion
Capture [52], ICCV 2015

• (Chapters 2 and 4) Panoptic Studio: A Massively Multiview System for Social Interac-
tion Capture [53], TPAMI 2017 (Video)

• (Chapter 3) MAP Visibility Estimation for Large-Scale Dynamic 3D Reconstruc-
tion [54], CVPR 2014 (Video)

• (Chapter 4) Hand Keypoint Detection in Single Images using Multiview Bootstrap-
ping [46], CVPR 2017 (Video)

• (Chapter 5) Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and
Bodies [48], CVPR 2018 (Best Student Paper Award) (Video)

• (Chapter 6) Panoptic Studio Database: http://domedb.perception.cs.cmu.edu

http://domedb.perception.cs.cmu.edu/tutorials/cvpr17/index.html
https://ieeexplore.ieee.org/document/7410738
https://ieeexplore.ieee.org/document/7410738
https://ieeexplore.ieee.org/document/8187699
https://ieeexplore.ieee.org/document/8187699
https://www.youtube.com/watch?v=m0-7HnWvxG4
https://jhugestar.github.io/14/CVPR_2014_Visibility.pdf
https://jhugestar.github.io/14/CVPR_2014_Visibility.pdf
https://www.youtube.com/watch?v=LaHTjBWago8
https://arxiv.org/abs/1704.07809
https://arxiv.org/abs/1704.07809
https://www.youtube.com/watch?v=Lajt6vS_dSM
http://openaccess.thecvf.com/content_cvpr_2018/papers/Joo_Total_Capture_A_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Joo_Total_Capture_A_CVPR_2018_paper.pdf
https://www.youtube.com/watch?v=5QzdXQSf-oY
http://domedb.perception.cs.cmu.edu
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(a) The Panoptic Studio

(b) Measuring 3D Anatomical Landmarks

(c) Total Body Motion Capture

(d) Modeling Social Interaction

Fig. 1.2 Thesis contribution. (a) The Panoptic Studio with 521 unique views by 480 VGAs,
31 HDs, and 10 RGB+D sensors; (b) An example scene captured in the Panoptic Studio and
measured 3D anatomical landmarks from bodies and hands; (c) A total motion capture result
showing the reconstructed 3D mesh models, capturing body, face, hand, and foot motions;
(d, left and middle) An example Haggling Game scene and measured 3D social signals; (d,
right) an example output of social signal modeling (speaking prediction)
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Sensing Social Signals
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Chapter 2

The Panoptic Studio

There are principal challenges in capturing social signals between individuals in a group:
(1) social interactions have to be sensed over a volume sufficient to house a dynamic social
group, yet subtle details of the motion where important social signals are embedded must be
captured; (2) strong occlusions emerge functionally in natural social interactions (e.g., people
systematically face each other while interacting, bodies are occluded by gesticulating limbs);
(3) human appearance and configuration variation is immense; and (4) social signaling is
sensitive to interference—for instance, attaching markers to the face or body, a pre-capture
model building stage, or even instructing each individual to assume a canonical body pose
during an interaction, primes the nature of subsequent interactions.

The Panoptic Studio is developed to overcome these challenges. The system has a large
geodesic sphere structure with a 5.49m diameter, with heterogeneous sensors on its surface
including 480 VGA cameras, 31 HD cameras, 10 RGB+D sensors, 23 microphones, and 5
DLP projectors. The core principle and motivation in building this system is to obtain as
much measurement as possible to have minimum assumptions about the scenes. We found
that the large number of views of the system greatly relieves all the aforementioned sensing
challenges, and also enables us to use relatively “weak" perceptual processes from the large
number of views rather than a complicated method with strong assumptions about the scenes.
To this end, this system enables us to measure a broad spectrum of social signals of naturally
interacting groups. This chapter covers the various hardware and low-level software issues in
building the Panoptic Studio, including structure design, architectures, synchronization, and
spatial calibration.

The Panoptic Studio is the output of several years of collaboration with Tomas Simon,
Xulong Li, Hao Liu, Lei Tan, Lin Gui, Timothy Godisart, Sean Banerjee, Hyun Soo Park,
Iain Matthews, Bart Nabbe, Shohei Nobuhara, Takeo Kanade, and Yaser Sheikh.
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2.1 Structural Design

The physical frame of the studio is a variant of a face-transitive solid called a truncated
pentagonal hexecontahedron. This particular structure was selected because it has among the
largest number of transitive faces of any geodesic dome [55]. The transitivity of the faces
enables the modular architecture, and ensures that the structure remains easy to upgrade and
customize with different panels of the same configuration. The structure has a diameter of
5.49m and a total height of 4.15m. The floor of the dome is 1.40m below the center of the
sphere structure to increase access to the edges. In all, the structure consists of 6 pentagonal
panels, 40 hexagonal panels, and 10 trimmed base panels. The interior and exterior view of
the Panoptic Studio are shown in Figure 2.1 and a 360° panoramic view of the interior of
the Panoptic Studio is shown in Figure 2.2. The structural design is illustrated in the left of
Figure 2.3.

Our design was modularized so that each hexagonal panel houses a set of 24 VGA
cameras and a HD camera. To determine the placement of the VGA cameras, we initialized
their positions by tessellating the hexagon face into 24 triangles and using this initialization to
define a 3-neighborhood structure shown in the right of Figure 2.3. Using this neighborhood
structure and the initialization we determine the placement of the cameras over the geodesic
dome by minimizing the difference in angles between all neighbors of every camera,

{θi j}∗ = argmin
{θi j}

P

∑
p=1

N

∑
i=1

∑
j∈N (i)

∑
k∈N (i)̸= j

(r(θi j|p)− r(θik|p))2,

where P = 20 is the number of panels, N = 24 is the number of cameras in each panel, N (·)
is the neighborhood of a camera, r(·|p) is a function transforming the angle on a reference
panel to the p-th panel. The cameras sample the span of the vertical axis of the space and
sample 48.71◦ of the horizontal axis. With this distribution, the minimum baseline between
any VGA camera and its nearest three neighbors is 21.05cm.

The 31 HD cameras are installed at the center of each hexagonal panel, and 5 projectors
are installed at the center of each pentagonal panel1. Additionally, a total of 10 Kinect v2
RGB+D sensors are mounted at heights of 1 and 2.6 meters, forming two rings with 5 evenly
spaced sensors each.

1Note that no sensors are installed on some panels (e.g., ceiling panels occluded by lights).
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Fig. 2.1 The exterior and interior shape of the Panoptic Studio, equipped with 480 VGA
cameras, 31 HD cameras, 10 RGB+D cameras, and 5 DLP Projectors. (Top) The exterior of
the Panoptic Studio. (Bottom) The interior of the Panoptic Studio.
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Fig. 2.2 A 360° panoramic photo captured inside the Panoptic Studio. The empty panel is
the entrance of the studio.

Fig. 2.3 Structural Design of the Panoptic Studio (Left) The system has a modularized design
with repeated pentagon and hexagon shapes, to ensure interchangeability (Right) Optimized
VGA camera positions to ensure uniform angles with respect to the dome center between
each camera and all its neighbors (e.g., Camera i is a neighbor of Camera j).
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Fig. 2.4 Modularized system architecture. The system is composed of four sub-systems,
depending on sensor types. The studio houses 480 VGA cameras, 31 HD cameras, 10
RGB+D sensors, and 5 DLP projectors. The 480 VGA cameras are synchronized by a clock
system with 25 Hz, and HD cameras and projectors are synchronized by another clock system
with 29.97 Hz. Both clocks are temporally aligned by recording them as a stereo signal.
10 RGB-D sensors are also time-aligned in the common time domain. All the sensors are
spatially calibrated to the same coordinate system.

2.2 System Architecture

Figure 2.4 shows the architecture of our system. The panoptic studio is composed of four
sub-systems: VGA camera system, HD camera system, RGB-D camera system, and projector
system.
VGA Camera System: The 480 cameras are arranged modularly with 24 cameras in each
of 20 standard hexagonal panels on the dome. Each module in each panel is managed by a
Distributed Module Controller (DMC) that triggers all cameras in the module, consolidates
the videos from cameras, and transmits the data to the local machine. Each individual camera
has a global shutter CMOS sensor, with a fixed focal length of 4.5mm, capturing VGA
(640×480) resolution images at 25Hz. The detailed configuration is shown in Figure 2.5.

Each panel produces an uncompressed video stream at 1.47 Gbps, and thus, the data-rate
of the entire set of 480 cameras is approximately 29.4 Gbps. To handle this stream, the
system pipeline has been designed with a modularized communication and control structure.
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Fig. 2.5 A VGA camera module. We use a customized camera array with 24 VGA cameras
as a single module. Each module is controlled by a camera controller that is connected to
a small desktop machine. They are attached to the panel. The small desktop machine is
connected to a single VGA node machine, to transfer captured data.

For each module, the clock generator sends a frame counter, trigger signal, and the pixel
clock signal to each DMC associated with a panel. The DMC uses this timing information to
initiate and synchronize capture of all cameras within the module. Upon trigger and exposure,
each of the 24 camera heads transfers back image data via the camera interconnect to the
DMC, which consolidates the image data and timing from all cameras. This composite data
is then transferred via optical interconnect to the module node, where it is stored locally.
The 20 local nodes for VGA camera system are shown in the left of the Figure 2.7. Each
local node for a module has dual purpose: it serves as a distributed RAID storage unit2 and
participates as a multi-core computational node in a cluster. All the local nodes of our system
are on a local network on a gigabit switch. The acquisition is controlled via a master node
that a system operator can use to control all functions of the studio.

HD Camera System: HD cameras are also modularized and each pair of cameras are
connected to a local node machine via SDI cables. We use Cannon XH G1s High Defini-
tion camcorders, each of which has 3 CCD sensors and captures scenes at 29.97 Hz with
(1920×1080) resolution. Each HD camera is equipped with a Canon 4.5-90 mm f1.6-f3.5
HD resolving lens, which we fit with a wide angle converter (Canon WD-H72). All HD
cameras are genlocked and time-coded, driven by an external clock. The details of the HD
camera modules are shown in Figure 2.6. The data from a pair of HD cameras is transferred
via HD-SDI to a local HD node. Each local node saves the data from two cameras to two

2Each node has 3 HDDs integrated as RAID-0 to have sufficient write speed without data loss, totaling 60
HDDs for 20 modules.
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Fig. 2.6 An HD camera module. We use an off-the-shelf HD camcorder with external genlock
and timecode signals for the synchronization. Two HD cameras are connected to a single
HD machine.

SSD storage units respectively. 16 HD nodes are dedicated for 31 HD cameras, as shown in
the right of the Figure 2.7.

RGB+D Sensor System: Each RGB+D sensor is connected to a dedicated capture node
that is mounted on the dome exterior. To capture at rates of approximately 30 Hz, the nodes
are equipped with two SSD drives each and store color, depth, and infrared frames as well
as body and face detections from the Kinect SDK. A separate master node controls and
coordinates the 10 capture nodes via the local network. The details of this subsystem are
described in the thesis work of Simon [56].

Data Size and Storage System: The data size of a minute of data from entire sensors is
about 531 GB. The detailed data size for each sub-system is summarized in Figure 2.8a and
an example scene captured by all the sensors are shown in the Figure 2.9. The data from
each sensor module is first saved to a local storage system in each connected node. We use
different local storage solutions based on the data size generated by each sensor type. For
VGA module with 25 cameras, we use 3 HDDs integrated as RAID-0. This solution provides
fast writing speed with a sufficient storage size to store more than two hours of data with
relatively low cost3. For each HD camera, we dedicate a 1TB SSD, which can store more
than 2 hours of data. And for Kinect module, we dedicate two 1TB SSDs. All sensor data

3However, as known, the RAID-0 system is unstable with frequent RAID failures.
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Fig. 2.7 VGA subsystem is controlled by 20 node machines, and HD subsystem is controlled
by 16 node machines. All nodes are connected and controlled by a master node to initiate the
capture.

in the local storages are transferred to NAS for long-term storage, shown in Figure 2.8b, by
a backup script. Currently, the Panoptic Studio system has about 1.5 PB long-term storage
space.

2.3 Temporal Calibration for Heterogeneous Sensors

Synchronizing the cameras is necessary to use geometric constraints (such as triangulation)
across multiple views. In our system, we use hardware clocks to trigger cameras at the same
time. Because the frame rates of the VGA and HD cameras are different (25 fps and 29.97 fps
respectively) we use two separate hardware clocks to achieve shutter-level synchronization
among all VGA cameras and among all HD cameras, respectively. To precisely align both
time references, we record the timecode signals generated from the two clocks as a single
stereo audio signal, which we then decode to obtain a precise alignment at sub-millisecond
accuracy, as shown in Figure 2.10.

Time alignment with the Kinect v2 streams (RGB and depth) is achieved with a small
hardware modification: each Kinect’s microphone array is rewired to instead record an LTC
timecode signal4. This timecode signal is the same that is produced by the genlock and
timecode generator used to synchronize the HD cameras, and is distributed to each Kinect via
a distribution amplifier. We process the Kinect audio to decode the LTC timecode, yielding
temporal alignment between the recorded Kinect data—which is timestamped by the capture

4As a result of this modification, microphone output on the Kinects is therefore discarded. More details
about this hardware modification are available upon request.
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(a) Data size and local storage for each node (b) NAS sotrage system

Fig. 2.8 (a) Overall data size the Panoptic Studio generates per each second, and storage
solutions for local nodes (b) Network Attached Storage (NAS) system to store the data for
long-term.

API for accurate relative timing between color, depth, and audio frames—and the HD video
frames. Empirically, we have confirmed the temporal alignment obtained by this method to
be of at least millisecond accuracy.

2.4 Spatial Calibration

We use Structure from Motion (SfM) to calibrate all of the 521 cameras. To effectively
generate feature points for SfM, five projectors are also installed on the geodesic dome. For
calibration, they project a random pattern on a white structure as shown in the Figure 2.11,
and multiple scenes (typically three) are captured by moving the structure within the dome.
We perform SfM for each scene separately and perform a bundle adjustment by merging all
the matches from each scene. We use a VisualSfM software [57] with 1 distortion parameter
to produce an initial estimate and a set of candidate correspondences, and subsequently
run our own bundle adjustment implementation with 5 distortion parameters for the final
refinement. The computation time is about 12 hours with 6 scenes (521 images for each)
using a 6 core machine. In this calibration process, we only use the color cameras of Kinects.
We additionally calibrate the transformation between the color and depth sensor for each
Kinect with a standard checkerboard pattern, placing all cameras in alignment within a global
coordinate frame.
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Fig. 2.9 An example scene from 520 camera views of the Panoptic Studio, from 480 VGA
cameras, 30 HD cameras, and 10 RGB cameras of the RGB+D sensors.

Fig. 2.10 Time alignment between VGA camera system and HD camera system. The VGA
clock generates 100 Hz time signals, which is downsampled to 25 Hz in VGA cameras, while
the HD clock generates signals in 29.97 Hz. We connect them as a stereo audio signal and
record it during the capture, which can be decoded afterward for temporal alignment.
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Fig. 2.11 For efficient spatial calibration process, we use a portable folding tent structure by
projecting random patterns from 5 DLP projectors. (Top row) the portable tent and projected
patterns; (Middle left) a VGA view; (Middle center) an HD view; (Middle right) a Kinect
view from its color camera; (Bottom row) Visualizations of 3D camera localization and a
reconstructed 3D point cloud.
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2.5 Lighting, Audio Recording, and Capture Softwares

Lighting: We use a relatively low-cost solution for lighting by installing fluorescent lamps
on the ceiling and floors, as shown in Figure 2.12. The floor lights are important to reduce
the shadow issues of the scenes.
Audio Recording: Audio from microphones can be easily recorded and synchronized with
cameras by connecting microphones to HD cameras. Each HD camera has two mono micro-
phone inputs, by which the audio signals are saved as a stereo audio file. We installed one
microphone on the floor and two microphones on the ceiling. We also use 20 wireless lapel
microphones by connecting the wireless receivers to HD cameras, as shown in Figure 2.13.
Each lapel microphone is assigned to a subject during the social interaction capture.
Capture Softwares: As an important part of the system, we built several custom software
systems to control the capture process. Each subsystem is controlled by a separate capture
software. We built a shell script to initiate both VGA and HD capture software along with
the sync signal recording together in the master node. For VGA, we built a server-client
software system, where a local server is opened and runs at each VGA node to communicate
with the master node. In the master node, an operator can check the status of each VGA
module, visualize the camera views in real-time streaming, and initiate the capture. The VGA
capture tool is shown in the Figure 2.14. For the HD, we use a secure shell (SSH) protocol to
automatically initiate the capture software at each machine. Kinect is separately controlled
by the Kinect master node.

After the capture, the captured scenes from VGA and HD sensors can be visualized in our
viewer, as shown in Figure 2.15, where the viewer loads capture data by remotely connecting
all local storages.

2.6 Discussion

We found three limitations in our hardware design which can be reconsidered for follow-up
research. The first is the incompatible frame rates among heterogeneous sensors, especially
between HD cameras and VGA cameras, which makes it hard to fuse them for 3D reconstruc-
tion. Due to this reason, we use each subsystem for different purposes; The VGA system is
mainly used to reconstruct 3D body motions, and HD system is used to reconstruct the face
and hand motions. In the end, all reconstruction results are combined via an interpolation.
A better synchronization may enable much easier solutions to leverage all sensors together.
The second issue is that all the camera views mainly focus on the center of the dome and,
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Fig. 2.12 We use a relatively low-cost solution for lighting by installing fluorescent lamps on
the ceiling and the floor.

Fig. 2.13 Each HD camera has two mono microphone inputs, by which the audio signals are
saved as a stereo audio file. We also use 20 wireless lapel microphones by connecting the
wireless receivers to HD cameras.
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Fig. 2.14 A capture software for VGA sub-system. In the master node, users can check
the status of each VGA module (black consoles on the left), visualize the camera views in
real-time streaming (the GUI tool on the right), and initiate the capture.

thus, fewer views are available at the edges of the capture volume. Such design is ideal
given the assumption that subjects are located at the center of the system, but we observe
that sometimes people tend to stand near the walls during social interactions. An alternative
direction would be to make cameras focus on random locations so that view coverage can be
uniformly spread throughout the working volume. Last, we found that the spatial and tem-
poral resolutions of cameras installed in the studio limit the reconstruction quality. Sensors
with higher resolution and faster speed need to be considered in the follow-up research.
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Fig. 2.15 A viewer to visualize the captured data from VGA and HD cameras.
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Measuring Social Signals
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“Measure what is measurable, and make
measurable what is not so."

— Galileo Galilei





Chapter 3

Measuring Dynamic Dense 3D Surface
Movements

Important messages during communication are often transmitted by subtle body movements.
Accurately measuring such body movements in 3D across time is therefore important in
analyzing social interactions. In this chapter, we aim at reconstructing dense 3D trajectories of
dynamic 3D object, which we refer to as a 3D trajectory stream. However, such video-based
3D motion reconstruction is challenging, as natural motion produces a greater occurrence of
measurement loss due to occlusion and also causes artifacts in imagery (e.g., motion blur
and texture deformation). Utilizing a large number of cameras can address these challenges,
because it is likely to (1) narrow the average baseline between nearby cameras, (2) reduce the
occurrence of occlusion, and (3) provide robustness to measurement noise due to the surplus
views. However, previous approaches are unable to fully leverage the increasing number of
views to improve 3D tracking performance (in terms of the average length of reconstructed
trajectories, the density of the trajectories, and the accuracy of localization). The principal
cause of failure emerges from errors in reasoning about the time-varying visibility of dynamic
3D points. Poor visibility reasoning severely affects tracking performance, as an algorithm
cannot benefit from an alternate viewpoint if it is unaware that the point is visible in the
alternate view. Furthermore, an erroneous conclusion that a point is visible in a camera
can bias the reconstruction, often producing a characteristic “jump" artifact where a point
assumes the identity of a different location.

In this chapter, we demonstrate a method that precise inference of point visibility allows
reconstruction algorithms to fully leverage large numbers of views to produce longer 3D
trajectories with higher accuracy. In particular, our core algorithmic contributions in this
chapter are: (1) the use of motion consistency as a cue for the visibility of moving points;
(2) the use of viewpoint regularity as a prior and a measure for viewpoint proximity; and
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(3) a maximum a posteriori (MAP) estimate for visibility estimation by probabilistically
incorporating these cues with photometric and geometric consistency. We report empirical
performance in reconstructing 3D motion captured by 480 VGA cameras1 in scenes that
contains significant occlusion, large displacement, and changes in the topology of the scene.

3.1 Related Work

Dynamic 3D reconstruction approaches can be broadly categorized in methods that use
silhouettes for reconstruction (e.g., [20, 58–61]) and methods that use correspondence for
reconstruction (e.g., [62–64]. Silhouette-based approaches typically use visual hulls to
produce highly dense reconstruction, but require subsequent processing to estimate 3D
trajectories [20, 59]. Surface matching algorithms are used to provide dense correspondences
between consecutive frames [65–67]. In these approaches, mesh models in each frame
are independently generated using shape-from-silhouette techniques, and sparse matching
between key mesh vertexes are performed using various cues such as shape and appearance
features. Dense matching is then carried out based on the sparse matches using a regularized
cost function based on geodesic distance. The accuracy of motion estimation depends highly
on the initial surface and texture, and is limited by the vertex resolution. Silhouette-based
methods also require stationary cameras to be able to estimate accurate silhouettes.

In comparison to silhouette-based reconstruction approaches, correspondence-based
methods produce sparser reconstructions, but do not require stationary cameras and can
directly produce 3D trajectories. Among correspondence-based methods, perhaps the most
related approaches are scene flow reconstruction methods, introduced by Vedula et al. [62].
Independently estimated 2D optical flow from multiple calibrated cameras was triangulated
to generate the 3D flow, assuming that visibility was given a priori via reconstructed object
shape. Several subsequent algorithms also have been proposed to recover both shape (depth)
and motion simultaneously [68–70]. The basic assumption in these approaches is brightness
constancy (or photometric consistency), which is used to determine the correspondences
across views; spatial regularization is used to condition the optimization and reduce the noise.
While these approaches represent the target as a 3D point, other approaches use richer 3D
representation such as dynamic surfels [63, 64] or meshes [26]. Mesh-based approaches
have demonstrated robust results, producing trajectories of longer duration, but at the cost of
assuming a fixed topology with a known mesh, and through the use of regularization.

Typically, in previous work, only a small number of cameras are considered. In scene
flow approaches, stereo cameras are usually used, and other approaches also use at most

1This research was conducted before we build the HD and RGB+D sensors in the Panoptic Studio
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Fig. 3.1 The motion of a patch between time t − 1 and t is reconstructed from multiple
cameras.

10 to 20 cameras (17 by Vedula et al. [62], 22 by Furukawa and Ponce [26], 8 by Huguet
and Devernay [70], 7 by Carceroni and Kutalakos [63]). At this scale, information loss due
to motion blur, texture deformation, occlusion, and self-occlusion are severe, and therefore
necessitate significant spatiotemporal regularization of reconstructions. In most algorithms,
precise camera visibility information is not considered, because the noise from a small
number of outlier cameras can be ignored. Camera visibility is either assumed to be given
by the 3D reconstruction algorithm [62] or handled by a robust estimator [69, 64, 68, 71].
Patch-based methods use photometric consistency to determine visibility by comparing the
texture across views [63, 64, 26]. However, these approaches require the texture of the 3D
patch, which depends heavily on the accuracy of the recovered patch shape.

3.2 Notation

Our algorithm takes, as input, image sequences from N calibrated and synchronized cameras
over F frames and produces, as output, 3D trajectories of P moving points with their
instantaneous orientations and associated visibility in each camera frame. Since the method
is applied to each point independently, we consider only a single point here to simplify the
exposition.

As shown in Figure 3.1, we track a parallelogram patch centered on a target 3D point
X ∈ R3, whose extent is defined by two additional points Yu and Yv ∈ R3. The texture
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information Q ∈ Rm associated with the patch is defined by a unit vector concatenating
normalized intensity values at a fixed number of grid positions on the patch, where m is the
number positions in the grid2.

The patch S(t) is denoted by the set {X(t),Yu(t),Yv(t),Q(t)}, which is associated with
the camera visibility set V(t) = {v1(t), · · · ,vN(t)}, where vi(t) is a binary value representing
visibility with respect to the ith camera. A 3D point is projected onto the ith camera associated
with a 3×4 projection matrix Pi. The projection matrix is parametrized by a camera center
vector Ci ∈ R3 and a 3×3 rotation matrix Ri ∈ SO(3). The “look-at" vector oi is aligned
with the z-axis of the camera, i.e., the third column of RT

i .
The 3D patch is projected onto the camera plane to form the projected patch si(t) =

{xi(t),yu
i (t),y

v
i (t),qi(t)}, where xi(t), yu(t), and yv(t) ∈ R2 are the projected points, i.e.,

x̂i(t)∼= PiX̂(t), ŷu
i (t)∼= PiŶu(t), and ŷv

i (t)∼= PiŶv(t), where ·̂ is the homogeneous coordinate
representation of each vector. qi ∈ Rm is the texture information of the projected patch,
which is defined by a concatenation of all the intensities from the ithcamera, corresponding
to the projected grid positions of S, and normalized as in Equation (3.1). Ideally, Q = qi if
the 3D patch S is visible from the ith camera, discounting illumination variation. We denote
mi as 2D optical flow at xi(t −1) in the ith camera, as shown in Figure 3.1.

The relationship between the ith camera and patch can be defined by the co-visibility set
ΓΓΓi = {γc

i ,γ
p
i }, where

γ
c
i =

(X−Ci)
Toi

||X−Ci||
and γ

p
i =

(Ci −X)TN
||Ci −X|| ,

γc
i encodes the angle cosine of the patch location with respect to the camera “look-at" vector

oi and γ
p
i encodes the angle cosine of the camera location with respect to the 3D patch normal

N.

3.3 Overview

At the initial time instance t0, a target 3D patch is reconstructed and, over time, the algorithm
alternately estimates the patch position and normal and its visibility with respect to all

2The texture vector Q is normalized as follows:

Q =
1√

∑
m
j=1(Q j −Q)2




Q1 −Q
...

Qm −Q


 (3.1)

where Q = ∑
m
j=1 Q j/m and Q j is the jth intensity value of the texture.
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Fig. 3.2 Overview of patch tracking and visibility estimation.

cameras. It should be noted that t0 can be any arbitrary frame and that the tracking and
the visibility computation are performed both forwards and backwards in time from t0. We
consider only forward tracking, from t −1 to t to simplify the description. The flow chart of
our algorithm is shown in Figure 3.2.
Patch Initialization. Given the images from different cameras at the same time instance
t0, the algorithm reconstructs 3D points by matching features and triangulates them within
a RANSAC framework. A 3D patch centered on X is reconstructed by maximizing the
photometric consistency among the cameras where the patch is visible3. This initializes S(t0)
and V(t0).
Patch Tracking. Given the previously obtained 3D patch S(t−1) and visibility V(t−1), the
algorithm estimates the next 3D patch S(t) based on 2D optical flow in the cameras defined by
V(t−1). For the ith camera in V(t−1), optical flow [73] is estimated at multiple scales at the
points xi(t −1), yu

i (t −1), and yv
i (t −1). To eliminate unreliable flow, a backward-forward

consistency check [74] is performed for flow at each scale and only the most reliable flow
is retained. The next 3D positions, X(t), Yu(t), and Yv(t), are estimated by triangulating
optical flow outputs within a RANSAC framework. The RANSAC process is crucial since
V(t −1) may not be valid anymore at time t, due to motion. After RANSAC, the normal
is refined by maximizing the photometric consistency among the images that belong to the
inliers of RANSAC, as in the patch initialization process.
Visibility Estimation. Based on the reconstructed S(t) and its motion from S(t − 1), our
approach finds the MAP estimate of the current visibility set V(t) by fusing photometric
consistency, motion consistency, and geometric consistency, in conjunction with a Markov
Random Field (MRF) prior. Typically, the tracking process is severely affected by false
positive cameras where the target is not visible. Poor visibility reasoning at the RANSAC
stage can cause a characteristic “jump" error to a different scene point, and also reduces

3The cameras that participate in RANSAC are used as an initial visible set, and the reference camera Pref is
selected as the one closest to the initial 3D point in the iniler set. A 3D patch centered on X is initialized as
a fixed scale square patch (40mm×40mm), with N parallel to ore f . We refine the patch based on the method
described by Furukawa and Ponce [72] and select a new reference camera as the one closest to the current patch
normal. The corresponding visibility set is updated by selecting cameras that have higher Normalized Cross
Correlation (NCC) score than a threshold compared to Pref. Within the patch initialization process, the normal
refinement and visibility update are iterated.



40 Measuring Dynamic Dense 3D Surface Movements

the normal refinement performance causing frequent local minima during the optimization
process. Our precise visibility estimation results in longer trajectories of higher accuracy.

Patch tracking and visibility estimation are interdependent processes. At each time
instance, we can iterate these two procedures until convergence; in practice, a single iteration
is usually sufficient.

3.4 Visibility Estimation

In this section, we present a method to compute the maximum a posteriori (MAP) estimate
of visibility V using photometric consistency, motion consistency, and geometric consistency,
with a proximity prior. These cues are represented using 2D texture {qi}N

i=1, 2D optical flow
{mi}N

i=1, and the co-visibility set {ΓΓΓi}N
i=1. Given these cues and by applying Bayes theorem,

the probability of visibility is

P(V|q1,m1,ΓΓΓ1, · · · ,qN ,mN ,ΓΓΓN)

∝ P(q1,m1,ΓΓΓ1, · · · ,qN ,mN ,ΓΓΓN |V)P(V).

Given the visibility of each camera, we assume that (1) the cues in that camera are
conditionally independent to the cues in other cameras and the visibility of other cameras,
(2) that each cue within the same camera is conditionally independent to each other. The
probability can be written as

(
N

∏
i=1

P(qi|vi)P(mi|vi)P(ΓΓΓi|vi)

)
P(V). (3.2)

The MAP estimate of visibility V∗ can be obtained by maximizing the expression in Equa-
tion (3.2), i.e.,

V∗ = argmax
V

(
N

∏
i=1

P(qi|vi)P(mi|vi)P(ΓΓΓi|vi)

)
P(V),

or equivalently,

V∗ = argmax
V

N

∑
i=1

logP(qi|vi)+
N

∑
i=1

logP(mi|vi)+

+
N

∑
i=1

logP(ΓΓΓi|vi)+ logP(V). (3.3)
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We describe the probability of each cue and the prior in the subsequent sub-sections, and
compute the MAP estimate by finding the minimum cut of a capacitated graph over cam-
eras [75].

3.4.1 Photometric consistency

Photometric consistency has been widely used for reasoning about visibility [76–78, 26, 64].
It measures the correlation between the texture Q of a 3D patch and the texture qi of the
corresponding patch in the ith camera. Normalized Cross Correlation (NCC) is one such
measure of photometric consistency, which is robust to illumination variation. Since Q and
qi are defined as normalized unit vectors by Equation (3.1), QTqi measures the NCC. We
model the probability distribution of qi using a von Mises-Fisher distribution around Q, i.e.,
qi ∼ V (Q,κ), which is defined by QTqi. κ is a concentration parameter that controls the
degree of variation of the texture. Lower values of κ allows more variation between Q and
qi. From the distribution, we can describe the logarithm of the probability of qi given vi as

logP(qi|vi) ∝ κQTqi. (3.4)

3.4.2 Motion Consistency

In dynamic scenes, motion is an informative cue for determining visibility. Given the 3D
motion of a patch, the observed optical flow at the ith camera must be consistent with the
projected 3D motion of the target patch, if the patch is visible from the camera view. In
other words, motion consistency requires that 2D optical flow mi must be consistent with the
projected displacement of the 3D motion xi(t)−xi(t −1).

We model the probability distribution of mi using a normal distribution around the
projected 3D displacement, i.e., mi ∼ N (xi(t)−xi(t −1),σ), where σ is the standard
deviation capturing the certainty of the 3D motion estimation in pixel units. Therefore, the
log likelihood can be written as

logP(mi|vi) ∝ −∥mi − (xi(t)−xi(t −1))∥2

2σ2 . (3.5)

Motion consistency is a necessary condition. We now characterize cases when the motion
consistency cue is ambiguous. Let X(t) and X′(t) be two distinct points in 3D space. Motion
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consistency cue is ambiguous if and only if the following two conditions hold:

PiX̂(t) ∼= PiX̂′(t)

PiX̂(t +1) ∼= PiX̂′(t +1) (3.6)

where ∥X−Ci∥> ∥X′−Ci∥, i.e., X′(t) occludes X(t) for the ith camera. In a static scene,
motion does not exist and thus, the motion consistency cue is always ambiguous because
X(t) = X(t + 1) and X′(t) = X′(t + 1). Another case that occurs in practice is when the
occluding patch and the occluded patch lie on a body undergoing global translational motion,
under a camera that approaches orthographic projection.

We characterize the set of ambiguous motions where Equation (3.6) holds, assuming that
X(t) and X′(t) undergo the same affine transform between frames, as

X(t +1) = AX(t)+a

X′(t +1) = AX′(t)+a, (3.7)

where A ∈R3×3 and a ∈R3 represent a 3D affine transform. The motion consistency cue is
ambiguous if and only if the following condition holds:

X ∈ null ([a]×A) , (3.8)

where null(·) is the null space of ·. See the Appendix for a proof. In ideal cases with infinite
precision and zero measurement noise, this condition rarely occurs (if there is motion).

3.4.3 Geometric consistency

Oriented patches are only visible from cameras whose “look-at" vector oi is in the opposite
direction to the patch normal N and in front of it. We incorporate this geometric cue based on
the co-visibility set ΓΓΓi considering the camera position relative to the patch normal direction
and the patch position relative to the camera “look-at" vector. The probability of ΓΓΓi, given
visibility vi, can be written as

P(ΓΓΓi|vi) =





1
(1−τc)(1−τp)

i f γc
i ≥ τc,and γ

p
i ≥ τp

0 otherwise,
(3.9)

where τc < 1 is the cosine angle representing the field of view of the camera, and τp < 1 is a
threshold (cosine angle) to determine the angular visibility with respect to the patch normal.
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Fig. 3.3 (a) The valid region filtered by γp and τp is shown as a shaded region. The angle
limitation with respect to the N is computed as cos−1 τp. (b) gs computed by two cameras
are shown as a shaded polygon, where

∫
V H (oTi o j)Fi(v)Fj(v)dv > 0. (c) An example where

H (oTi o j) = 0 is shown. An oriented patch cannot be visible by two cameras facing each
other simultaneously.

Figure 3.3(a) shows an example of the cue, where the shaded area represents the valid region
according to τp.

3.4.4 Visibility Regularization Prior

Under a Markov Random Field prior over camera visibility, we decompose the joint proba-
bility of visibility P(V) into pairwise probabilities, i.e.,

P(v1, · · · ,vN) = ∏
i, j∈G (i)

P(vi,v j), (3.10)

where G (i) is the set of adjacent camera indices of the ith camera. This decomposition
captures the prior distribution of visibility, representing the prior that two cameras that
have similar viewpoints are likely to have consistent visibility. This proximity constraint
constitutes prior knowledge that can regularize noisy visibility when both photometric
consistency and motion consistency cues are weak (e.g., due to motion blur in an individual
camera). We model the log likelihood of the joint probability as follows:

logP(v1, · · · ,vN) ∝ ∑
i, j∈G (i)

gs(vi,v j), (3.11)
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where gs is defined by the cost between two cameras using the overlapping volume of the
two camera frustums. This is estimated as follows:

gs(Pi,P j) =

∫
V H (oTi o j)Fi(v)Fj(v)dv∫

V Fi(v)+Fj(v)−Fi(v)Fj(v)dv
, (3.12)

where v is an infinitesimal volume in the working space V (see Figure 3.3(c)). Fi(v) is a
binary function defined as

Fi(v) =





1 i f v is visible f rom the ith camera

0 otherwise.
(3.13)

H is a Heaviside step function to take into account a pair of cameras oriented in similar
directions. Equation (3.11) captures the ratio between the volume of the intersections of
camera frustums and the volume of the union of camera frustums. Figure 3.3(b) illustrates gs

where the shaded polygon represents
∫

V H (oTi o j)Fi(v)Fj(v)dv, and Figure 3.3(c) shows an
example where H (oTi o j) = 0.

In practice, we discretize the working volume using voxels and count the number of
common voxels that are projected inside both cameras. This enables us to reward consistent
visibilities in proximal cameras.

3.4.5 MAP Visibility Estimation via Graph Cuts

We incorporate Equations (3.4), (3.5), (3.9), and (3.11) into Equation (3.3) to find the MAP
estimate of visibility V∗ and, therefore, Equation (3.3) can be rewritten as:

V∗ = argmin
V

N

∑
i=1

Ed(vi)+ ∑
i, j∈G (i)

Es(vi,v j), (3.14)

where Ed encodes photometric consistency, motion consistency, and geometric consistency,
and Es encodes the prior between cameras.

Ed(vi) =
∥mi−(xi(t)−xi(t−1))∥2

2σ2 −κQi
Tqi +δ (ΓΓΓi)

Es(vi,v j) =





0 i f vi = v j

gs(Pi,P j) otherwise,

where δ = log(1−τc)(1−τp) if γc
i > τc and γ

p
i > τp, or δ =∞, otherwise. This minimization

problem can be optimally computed via graph cuts [75].
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Table 3.1 Summary of the datasets.

Sequence Frames Duration # of points Av. traj. length
Circ. Movement 250 10.0 sec 10433 404.9 cm

Volleyball 210 8.4 sec 8422 326.4 cm
Bat Swing 200 8.0 sec 3849 224.1 cm

Falling Boxes 160 6.4 sec 17934 164.7 cm
Confetti 200 8.0 sec 10345 103.0 cm

Fluid Motion 200 8.0 sec 3153 123.1 cm

3.5 Results

We evaluate our algorithm on a variety of challenging scenes in the presence of significant
occlusion (Circular Movement and Falling Boxes), large displacement (Confetti and Fluid
motion), and topological change (Falling boxes and Volleyball). Our visibility estimation
enables us to better leverage a large number of cameras in producing accurate and long
trajectories. The dataset used in the evaluation is summarized in Table 3.1 and is available
on the project website. The sequences were captured at the CMU Panoptic Studio [53]
containing 480 cameras capturing 640×480 video at 25 Hz. The cameras are extrinsically
and intrinsically calibrated, and are synchronized via an external clock.

3.5.1 Quantitative Evaluation

Visibility Estimation Accuracy. We select an arbitrary patch in the Circular Movement
sequence reconstructed at a time instance, and manually generate ground-truth visibility data
at each sampled time instance by selecting cameras where the target patch is visible. We
compare our visibility estimation method (MAP) against a baseline method based on photo-
metric consistency alone, which is a cue commonly used by previous approaches [63, 64, 26].
Visibility estimation results generated from each method at a time instance are visualized in
Figure 3.4. As a criterion, we compute the true positive detection rate between the ground
truth data and V(t) estimated by both methods. The true positive rate from each method is
shown in Figure 3.4, demonstrating that our method outperforms the baseline method by a
significant margin.
Tracking Accuracy and Length. We evaluate our method considering both tracking accu-
racy and trajectory length. Inspired by the evaluation criterion proposed by Furukawa and
Ponce [26], a test sequence is generated by appending it at the end of itself in reverse order,
and the tracking algorithm is performed on the generated sequence. The tracked patches
must return back to the original position, if tracking is accurate. In this experiment, the
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3D error is defined by the 3D distance between initial and the final locations of the target
point. We generate five test sequences using the Circular Movement sequence by changing
the duration (10 to 50 frames) from a fixed initial frame. For the evaluation, we count
the number of successfully reconstructed trajectories that have less than 2 cm drift error.
Figure 3.5a shows a histogram of the number of trajectories using 480 cameras. Our MAP
estimate method outperforms the method based on photometric consistency in terms of both
number of trajectories and length of trajectories. We also perform experiments with different
number of cameras by uniformly sampling cameras to examine its impact on tracking success
rate. Figure 3.5b shows how our method leverages a large number of cameras. Note that
the number of successfully tracked trajectories increases faster than the method based on
photometric consistency.

3.5.2 Qualitative Evaluation

Visibility Boundary. We qualitatively demonstrate the performance of our MAP visibility
estimation using the sequence by illustrating cameras in the visibility set in 3D, and showing
the projection of the target patch in the images, as shown in Figure 3.6. This result shows a
clean visibility boundary, showing the occluded views by the baseball bat.
3D Trajectory Recontruction. We generate an initial patch cloud for a selected time in-
stance, and perform forwards and backwards patch tracking, up to 150 frames, for all the
sequences summarized in Table 3.1. Figure 3.7 shows the reconstructed trajectories. The
reconstructed time instances are color coded. Note that our method can be applied multiple
times to different time instances to increase the density of the trajectories.
Circular movement: Three people rotate around the person at the center (Figure 3.7a). This
experiment is used to evaluate our method in terms of visibility reasoning
Volleyball: Two people play volleyball (Figure 3.7b). We demonstrate an event where
motion is fast and occlusion is severe. We are able to reconstruct the trajectories of the ball
and players.
: A person swings a baseball bat. The reconstructed long trajectories can provide a computa-
tional basis for sport analytics, capturing subtle motion (Figure 3.7c).
Falling boxes: A person collides with stacked boxes and the boxes collapse. The scene
includes severe occlusion and topological change of the structure (Figure 3.7d).
Confetti: A person throws confetti in the air. 3D reconstruction of such sequences is chal-
lenging because of occlusion and appearance changes. Visibility estimation is challenging as
the confetti are small and their appearance changes abruptly (Figure 3.7e).
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Fluid motion: We generate turbulent flow in a room using a fan and small confetti (Fig-
ure 3.7e)4.

3.6 Summary

In this chapter, we present a method to reason about the time-varying visibility for 3D trajec-
tory reconstruction to leverage the large number of views in the Panoptic Studio. We address
novel cues (motion consistency, geometric consistency, and visibility regularization prior)
for visibility estimation, and fuse them with the commonly used photometric consistency
cue, within a MAP estimation framework. We demonstrate that our algorithm provides a
more accurate visibility and, consequently, produces longer and denser 3D trajectories than a
baseline using only photometric consistency. Unlike the photometric consistency cue, The
motion consistency cue is complementary to the photometric cue, as it does not require the
texture and the explicit 3D shape of the target 3D patch. Although the motion consistency
cue can be ambiguous, this ambiguity, in practice, usually occurs for the cameras behind the
target patch when the whole object body (including the patch) undergoes pure translation;
this case is handled well by the geometric consistency of the patch and camera.

A key benefit of our approach is that it does not use any spatial or temporal regularization
over the position of the point—the regularization used in our approach is over visibility. This
results in “faithful" reconstruction of 3D point motion that is not biased or smoothed out by
prior models of deformation, and this advantage is essential in measuring objective social
signals in social situations.

4For this result, we turned off geometric consistency by setting τc = 0 and τp = 0, as the objects are well
approximated by planes.
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Fig. 3.4 The red arrow denotes the normal vector of the selected patch. The pyramid structures
represent camera poses, where blue cameras belong to the visible set (we warp the camera
positions for better visualization). (a) The selected patch is shown in 3D and 2D image. (b)
We manually generate ground truth visibility. (c) Visibility estimated by the baseline. (d)
Visibility estimated by our method. (e) We compare accuracy of visibility estimates of both
methods.
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Fig. 3.5 (a) Our MAP estimate outperforms the baseline method in terms of the number of
trajectories and the length of trajectories. (b) Our method leverages the large number of
views, and shows a faster increasing curve than the baseline method.

Fig. 3.6 We qualitatively demonstrate the performance of MAP visibility estimation using
the sequence. The normal of the selected patch is shown as a red arrow in the 3D view (left)
and projected patch is shown as a red polygon in each image (right). The images with a blue
boundary are the views that belongs to the visibility set. The bat occludes the patch and its
effect can be seen as a “shadow" on the visibility set of cameras (left).
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Frame
t0 100− t0 150+0t

(a) Circular movement

Frame
t0 100− t0 100+0t

(b) Volleyball

Frame
t0 150− t0 50+0t

(c) Bat Swing

Frame
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(d) Falling boxes
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(e) Confetti

Frame
t0 50− t0 40+0t

(f) Fluid motion

Fig. 3.7 We reconstruct 3D trajectories in real world scenes in the presence of significant
occlusion, large displacement, and topological change. The color codes the time that
trajectory points are reconstructed. Note that each trajectory is individually reconstructed
without any spatial or temporal regularization.



Chapter 4

Measuring 3D Motion of Anatomical
Landmarks

A set of 3D anatomical landmarks from face, body1, and hands can approximate human
behavioral cues. These “registered” 3D cues directly provide correspondence across time,
enabling to study how each body parts are moving over time, and across individuals, enabling
to study the correlations among behavioral signals exchanged during social interaction by
investigating examples from many scenes. Notably, it is important to measure the signals as
complete as possible to avoid losing any important subtlety transmitted in social interaction.
Most prior approaches in social signal processing, however, have remained almost entirely
focused on the analysis of facial expressions only, despite emerging evidence [81, 82]
that facial expressions provide a fundamentally incomplete characterization of nonverbal
communication. One proximal cause for this singular focus on the face is that capturing
natural social interaction presents challenges that current state-of-the-art motion capture
systems simply cannot address.

In this chapter, we present a method to measure 3D motion of anatomical landmarks from
face, body, and hands by exploiting a large number of cameras in the Panoptic Studio. The
organizing principle is that social signal capture should be performed by the consolidation of
a large number of “weak" perceptual processes rather than the analysis of a few sophisticated
sensors. The large number of views provides robustness to occlusions, provides precision
over the capture space, and facilitates the boosting of weak 2D human pose detectors into a
strong 3D skeletal tracker without any prior about the scenes and subjects. Our method does
not rely on a 3D template model or any subject-specific assumption such as body shape, color,
height, and body topology. Yet, our method works robustly in various challenging social

1We use the term “body" landmark to refer to the landmarks from torso, arms, and legs detected by human
body pose detectors [79, 80]. It does not contain faces and hands.



52 Measuring 3D Motion of Anatomical Landmarks

interaction scenes of arbitrary number of people, producing temporally coherent time-varying
body structures. Furthermore, our method is free from error accumulation and, thus, enables
capture of long term group interactions (e.g., more than 10 minutes). All these properties are
important to enable the study of social interactions at scale (capturing motion from hundreds
of participants).

In this chapter, we first focus on body motion capture of interacting multiple people. Some
example results reconstructing naturally emerging body postures are shown in Figure 4.1.
Once 3D body landmarks are obtained, 3D faces and hands are subsequently reconstructed
by running 2D face and hand detector [46] on the candidate regions specified by the body
landmarks. To this end, 3D faces and hands are reconstructed in the same coordinate with
bodies by triangulating the detected 2D hand and face landmarks across views, providing the
3D anatomical landmarks from body, face, and hands for multiple individuals.

4.1 Related Work

4.1.1 Automated Group Behavior Analysis

Over the last decade, there has been increasing interest in analyzing social interaction among
multiple people automatically using multiple camera sensors. Several datasets recording free-
standing conversational groups are presented where multiple people (from 5 to 14 subjects)
move and behave naturally communicating without restriction [83–85]. Compared to the
scene captured in structured environment such as round-table meetings [35], the subjects in
such unstructured environments show richer social signals by their body motion. However,
due to the unconstrained nature, measuring their motion become much more challenging due
to the occlusions by limited view points and limited resolutions to cover large area. Thus
all of the previous work rely on coarse level manual annotations (e.g., quantized body/head
orientation in every3 seconds), and mainly focus on higher level social understanding from the
coarse measurement such as F-formation detection [35] and personality predictions [85, 83].
Non of the previous work try to measure accurate full body motion of every individuals in
such challenging scenarios although a lot of social signals are embedded in those subtle cues.

4.1.2 Markerless Motion Capturing Using Multiple View Systems

In computer vision area, there has been a long history in the research to measure the 3D
structure and motion of dynamically moving human subjects using multiple camera sensors.
Kanade et al. [86] pioneered the use of multi-view sensing systems to “virtualize" reality,
using 51 cameras mounted on geodesic dome of 5 meter in diameter. A number of systems
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were subsequently proposed to produce realtime virtualizations [87–90]. Vlasic et al. [25]
recovered detail by applying multi-view photometric stereo constraints using a system with
1200 lights on a dome and eight cameras. More recently, a multimodal multi-view stereo
system fusing 53 RGB cameras and 53 infrared cameras has been proposed to reconstruct
high quality 3D virtual characters [91]. These researches mainly focus on reconstructing 3D
virtual structure and surface rather than motions by independently processing each frames.

Other methods explicitly tackle the marker-less motion capture problem by producing
the motion as the 3D skeletal structures over time. To obtain greater details and improve
the robustness given limited number of cameras (usually less than 15), de Aguiar et al. [20],
Vlasic et al. [92], and Furukawa and Ponce [26] deformed pre-defined templates of fixed
topology to recover the details that were subsampled or occluded in the set of views at a
time instant. These methods require to generate a rigged 3D model for each individual and
the quality of the template is important to reach high accuracy. The model also should be
aligned at the initial frame to be tracked, and usually a predefined pose (such as T-pose)
should be performed by all the individuals at the beginning of the capture. In most cases,
silhouette is used as an important measurement to deform the template, and, thus, a Chroma
key environment of the studio is frequently used for easier background subtraction. The
methods in this area fundamentally suffer from topological changes of the scene. Although
the method shows promising results in some scenes, the requirement of high quality 3D
template specified for each individual limits the practicality of the method especially for the
social motion capture because: (1) any subjects should be captured to understand human
behavior and reconstructing template for each individual requires to much effort and time;
(2) topological changes usually happen in our motion during the interaction (3) instructing
people to perform the predefined canonical body pose would even interfere their naturalism.

It should be also noted that the performance of the previous methods are demonstrated by
researcher themselves’ or actors with exaggerated motions (e.g., fighting, jumping, dance,
and so on). The scenes usually have a single person, and few approaches have been proposed
to reconstruct two people [29], and three interacting people [30].

In contrast to previous work, our method are free from all the above limitations. Our
method does not rely on the predefined 3D template, and can reconstruct the people’s motion
directly without knowing prior assumptions about the scene and individuals: the scene may
have arbitrary number of people; people can be any shape (children to adult, small to tall);
people can wear any color of clothes; people can freely leave or participate to the scene
without any requiring any initialization; people can perform any natural motion they want
free from topological constraints. Our date contains multiple people’s natural interactions
(up to 8), and people performs any challenging natural motion without constrains (crossing
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Fig. 4.1 HD example views showing frequently occurring postures that carry rich social
signals, with 3D body pose automatically annotated by our method.

arms, chin on a hand, and so on). This is directly advantageous for social motion capture
because it minimize the potential interference on natural social signaling and capture the
subjects at scale which is important for social behavior analysis.

4.1.3 Pose Detection Approaches

Depth sensor such as the Kinect [93, 27] is also emerging as a promising sensing modality.
The main advantage of this sensor is that it can produce 3D pose from a single view. However,
this sensing paradigms directly interfere with social interaction: the Kinect requires people
to face the sensor direction to get reasonable measurements. Using multiple Kinects has a
potential [29] in that it may produce dense point cloud easily, but how to fuse them for 3D
pose estimation has not been explored, and more importantly synchronization among Kinects
is inherently challenging in the current system specification.

Over the last few years, single view 2D pose estimation methods have made significant
progress [80], by utilizing Convolutional Neural Network framework with large scale of
human pose dataset [94]. The state-of-the-art method shows [80] excellent performance
in various environments regardless subject’s shape, appearance, and scales. It is a natural
direction to use the body pose detector in multiple views by fusing the 2D detection results
in 3D [95, 96, 79, 23, 97]. Ideally only two views are enough to reconstruct 3D joints from
the 2D detector without considering occlusion. Obviously, the problem becomes challenging
if occlusions in the scene becomes severe, and more and more views are required to get the
desired performance. However, non of the previous work focus on the social scenes as in this
paper, and the study about the views and the scene complexity has never been performed.
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4.2 Method Overview and Notation

Our algorithm is composed of two major stages. The first stage takes, as input, images
from multiple views at a time instance (calibrated and synchronized), and produces 3D body
skeletal proposals for multiple human subjects. The second stage further refines the output
of the first stage by using a dense 3D patch trajectory stream [98], and produces temporally
stable 3D skeletons and an associated set of labeled 3D patch trajectories for each body part,
describing subtle surface motions.

In the first stage, a 2D pose detector [80] is computed independently on all 480 VGA
views at each time instant t, generating detection score maps for each body joint (see
Fig. 4.2b). The 2D score maps for each body joint j ∈ {1, · · · ,J} are combined into a
3D score map H j(Z) by projecting a grid of voxels Z ∈ R3 onto the 2D score maps and
computing an average 3D score at each voxel (subsection 4.3.1).

Our approach then generates several levels of proposals, as shown in Figure 3.2. A
set of node proposals N j for each joint j is generated by non-maxima suppression of the
3D score map H j(Z), where the k-th node proposal Nk

j ∈ R3 is a putative 3D position of
that anatomical landmark. Similarly, the set of part proposals is denoted by Puv, where
u and v are joints and (u,v) ∈ B is the set of body parts or bones composing a skeleton
hierarchy. The k-th part proposal, Pk

uv = (Nku
u ,Nkv

v ) ∈R6, is a putative body part connecting
two node proposals, Nku

u and Nkv
v , where the index k enumerates all possible combinations

of ku and kv. As the output of the first stage, our algorithm produces skeletal proposals; we
refer to the k-th proposal as Sk = {Pk

uv}uv∈B. A skeletal proposal is generated by finding an
optimal combination of part proposals using a dynamic programming method under the score
function defined in subsection 4.3.3. Here, we abuse the notation to have Pk

uv refer to the
optimally assigned part u,v of skeleton k (the superscript k is understood to be the optimal
mapping, from context). After reconstructing skeletal proposals at each time t independently,
we associate skeletons from the same identities across time and generate skeletal trajectory
proposals S̃k(t) = {P̃k

uv(t)}uv∈B, where P̃k
uv(t) is a part trajectory proposal, a moving part

across time, with k similarly overloaded to denote the optimal associations determined in
each frame t.

In the second stage, we refine the skeletal trajectory proposals generated in the first
stage using dense 3D patch trajectories [98]. To produce evidence of the motion of different
anatomical landmarks, we compute a set of dense 3D trajectories F = {fi}NF

i=1, which we refer
to as a 3D patch trajectory stream, by tracking each 3D patch independently. Each patch
trajectory fi is initiated at an arbitrary time (every 20th frame in our results), and tracked for
an arbitrary duration (30 frames backward-forward in our results) using the method of Joo
et al. [98]. Our method associates a part trajectory P̃k

uv with a set of patch trajectories Fk
uv
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(a) Multiview Input

HeadTop/neck/bodyCenter Left shoulder/elbow/wrist Right shoulder/elbow/wrist Left hip/knee/ankle Right hip/knee/ankle

(c) Node Proposals (d) Part Proposals (e) Skeletal Proposals (f) Part Trajectory Streams(b) Score Maps

Fig. 4.2 Several levels of proposals generated by our method. (a) Images from upto 480
views. (b) Per-joint detection score maps. (c) Node proposals generated after non-maxima
suppression. (d) Part proposals by connecting a pair of node proposals. (e) Skeletal proposals
generated by piecing together part proposals. (f) Labeled 3D patch trajectory stream showing
associations with each part trajectory. In (c-f), color means joint or part labels shown below
the figure.

Fig. 4.3 2D pose detections and score maps generated by the method of [80]. (Column 1)
Example views out of 480 views with proposals by the pose detector (Column 2-7) Heat
maps for each node on each view. Note that the body pose detector distinguishes left-right
limbs.

out of F, and these trajectories determine rigid transformations, T (t+1 | t) ∈ SE(3), between
any time t to t+1 for this part. These labeled 3D trajectories associated to each part provide
surface deformation cues and also play a role in refining the quality by reducing motion jitter,
filling missing parts, and detecting erroneous parts.

4.3 The First Stage: Skeletal Proposals Generation

Our algorithm integrates 2D pose detections across the many views of our massively mul-
tiview system, fusing simple 2D cues to estimate 3D skeletal poses at each time instance.
While detections in any single view may be incomplete or inaccurate—typically due to
occlusions—we find that aggregating these cues across many views yields very stable re-
sults. Our method is simple, yet robust thanks to the large number of views. In contrast,
prior marker-less motion capture methods are typically “model-dependent”, requiring a
3D template model to constrain shape deformations, a motion model to constrain temporal
deformations, and a relatively complex energy function minimization that trades off each of
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Table 4.1 Summary of Notation.

Notation Descriptions

sc
i i-th 2D skeleton detection in a camera view c

sc
i j j-th joint of i-th 2D skeleton in a camera view c

hc
i j(z) 2D score map of j-th joint of ith skeleton in view c

hc
j(z) Merged score map of j-th joint of all skeletons in view c

H j(Z) 3D score map for the j-th joint

N j Node proposals for the j-th joint

Puv Part proposals for the part connecting nodes (u,v)

S Skeletal proposals connecting multiple part proposals

S̃(t) Skeletal trajectory proposals, associated through time

P̃uv(t) Part trajectory proposals for the connecting nodes (u,v)

F 3D Patch Trajectory Stream, {fi}NF
i=1

Fuv A subset of F associated to P̃uv

these priors (e.g., [21, 26, 97]). Our method in this stage is essentially based on triangulating
detections at a single time instance, and, thus, does not suffer from error accumulation or
drift. It does not require a 3D template model, prior assumptions about the subject or the
motion, or an initial alignment for tracking. In this section, we describe how the proposals
are generated and built up from 2D cues.

4.3.1 3D Node Score Map and Node Proposals

A single-view 2D pose detector is computed on all VGA views at each time instant, and is
used to generate 2D pose detections and per-joint score maps in each image. Because the first
stage of our method is performed at each time independently, we will consider a fixed time
instant t, and drop the time variable for clarity. We use the detector of Wei et al. [80] without
additional training. The method of [80] requires bounding box proposals for each human
body as initialization, thus, we first apply a person detector similar to R-CNN [99], and run
the pose detector on the detected person proposals represented as bounding boxes. Each 2D
skeleton detection i in a camera view c is denoted by sc

i ∈ R2×15, and is composed of 15
anatomical landmarks or nodes (3 for the head/torso and 12 for the limbs), also referred to as
joints2. The position of the j-th node of the i-th person detection is denoted by sc

i j ∈R2. The

2We modify the skeleton hierarchy of [80] to have an explicit torso bone, by taking the center of the two hip
nodes as a body center node.
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method of [80] also provides a score map representing the per-pixel detection confidence for
each node sc

i j, which we denote as hc
i j(z) ∈ [0,1], where z ∈R2 indexes 2D image space. We

also compute a merged score map by taking the maximum across all person detections at each
pixel, hc

j(z) = maxi hc
i j(z). Merged score maps of example views are shown in Figure 4.3.

To combine 2D node score maps from multiple views into 3D, we generate a 3D score
map for each node using a spatial voting method. We first index the 3D working space into
a voxel grid (4cm in our implementation), and compute the node-likelihood score of each
voxel by projecting the center of the voxel to all views and taking the average of the 2D
scores at the projected locations. The 3D score map H j(Z) for a node j at the 3D position
Z ∈R3 is defined as

H j(Z) =
1

|V (Z)| ∑
c∈V (Z)

hc
j (Pc(Z)), (4.1)

where Pc(·) ∈R2 denotes projection into camera c, V (Z) is the set of cameras where the
3D location Z is visible, and |V (Z)| is the cardinality of the set. Note that the 3D score map
for each node is computed separately, producing fifteen 3D score maps at each time instant.

From the 3D score map for each node at each time instance, we perform Non-Maxima
Suppression (NMS), and keep all the candidates above a fixed threshold τ (we use τ=0.05).
The results are shown in the Figure 3.2c, and the same results color-coded by the node scores
are shown in Figure 4.4. Each node proposal, denoted as Nk

j for the k-th proposal for node j,
is a putative candidate for the j-th anatomical landmark of a participant.

4.3.2 Part Proposals

Given the generated node proposals, we infer part proposals by estimating connectivity
between each pair of nodes that make up a possible body part. The 2D detector [80]
uses appearance information during the inference, and, thus, the result tends to preserve
connectivity information (e.g., left knee is connected to the left foot of the same person).
Our approach fuses them by voting 2D connectivity into 3D. More specifically, we define a
connectivity score between a pair of node proposals by projecting them onto all views, and
checking in how many views they are actually connected, i.e., both nodes belong to the same
person detection. Formally, the connectivity score of a part Pk

uv between two node proposals
(Nku

u ,Nkv
v ), where (u,v) ∈ B, is defined as

Φ(Pk
uv) =

1
|V (Pk

uv)| ∑
c∈V (Pk

uv)

max
i

φ
c
iuv

(
Pc(Nku

u ),Pc(Nkv
v )
)
,

φ
c
iuv(zu,zv) = wc

iuv(zu,zv)δ
c
iuv (zu,zv)
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Fig. 4.4 Computed scores for node proposals and part proposals. The color encodes scores.

where

wc
iuv(zu,zv) =

1
2
(hc

iu(zu)+hc
iv(zv)) ,and

δ
c
iuv(zu,zv) =





1 if hc
iu(zu)> τ and hc

iv(zv)> τ

0 otherwise.

Here, Pc(Nku
u ) and Pc(Nkv

v ) are the projections of the two nodes of Pk
uv in view c, and

V (Pk
uv) is the set of cameras where the 3D part is visible. Intuitively, the part score Φ

represents the average connectivity score across all views from all potentially corresponding
2D person detections. Because we do not know the correspondence from 3D parts to 2D
person detections, we take the maximum score across all possible detections i in each view.
Assuming that the projected part corresponds to the i-th person detection in camera c, the
part connectivity score φ c

iuv is defined as the average score of the projected nodes, denoted
by wc

iuv(zu,zv). The delta function δ c
iuv additionally ensures that φ c

iuv is nonzero only if both
projected node locations have a sufficiently high score for the same detection i (i.e., both
nodes are detected as part of a single person). An example of computed part scores is shown
in Figure 4.4.

4.3.3 Generating Skeletal Proposals by Dynamic Programming

Our method generates skeleton proposals by piecing together the part proposals. Since each
skeleton is a tree structure, this can be computed efficiently using Dynamic Programming
(DP)—but only for a single person. Therefore, we use DP to greedily find 3D skeletons Sk

which maximize the sum of part scores,

Θ(Sk) = max
(k1,··· ,kJ)

∑
(u,v)∈B

Φ

(
Pk

uv

)
.
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A skeleton Sk is given by the mapping k 7→ (k1, · · · ,kJ), where the J-tuple (k1, · · · ,kJ)

determines the assignment of node proposals Nk j
j for each joint j in the body. After picking

the highest scoring skeleton Θ(Sk), the assigned nodes (k1, · · · ,kJ) are removed from the pool
of available node proposals and we run DP again to find the next highest scoring skeleton,
and so on until all possible skeletons are found.

One option here would be to threshold the skeleton scores Θ(Sk) at some minimum
value to determine valid detections. However, we can do better: each 3D skeleton should
be supported by 2D detections, and each 2D detection can correspond to only a single
3D skeleton. This observation is important because the voting used to generate 3D node
proposals assigns equal score to all voxels along the line of sight of each 2D detection
(Sect. 4.3.1), and, similarly, the max over detections in the part score Φ(·) makes Θ(Sk) an
overestimate.

To avoid this form of double counting, our method places each 3D node Nk
j in skeleton Sk

in correspondence with the closest 2D joint detection in each view. For each 3D node Nk
j, we

create a set of correspondences C k
j with elements (c, i) such that the distance ∥Pc(Nk

j)−sc
i j∥2

is the minimum across all detections i in view c and smaller than δ=10px. Once a 2D
correspondence is established, we remove it from the set of available 2D detections, and,
as above, this is performed greedily in order of decreasing skeleton score Θ(Sk). Skeletons
where the head node has fewer than two correspondences are discarded, i.e., if |C k

j |< 2 for j
the head.

We additionally use the set of correspondences C k
j to refine the 3D node locations by

minimizing reprojection error. This overcomes the discretization error introduced by the
voxel grid resolution. The final 3D node location N̂k

j is then

N̂k
j = argmin

Z ∑
(c,i)∈C k

j

∥∥Pc(Z)− sc
i j
∥∥

2 .

The output of the algorithm described in this section is 3D skeletal proposals reconstructed
independently at each time instance. After performing this process on all frames, our method
associates skeletons from the same identity across time by simply considering spatial distance
of the head node. That is, for a Sk1

t reconstructed at time t, we find a corresponding skeleton
at Sk1

t+1 with the closest head node location from Sk1
t within a threshold. To be somewhat

robust to missing skeleton detections, our method associates across a window of time. If
there is no corresponding skeleton at time t +1, we also consider the next time t +2 and find
a corresponding skeleton.

This first stage of our method is performed without considering any temporal cues. The
advantages of this are that the method can easily handle a varying number of people, there is
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no need to impose priors on the motion or skeletons, and the bulk of the computation is easily
parallelized across frames. In many cases, we find that the results from the first stage are
already sufficient for many applications. However, the results exhibit some jitter—especially
for complex scenes with limited views per person—and missed or noisy detections do not
benefit from evidence found in adjacent frames. We address these issues in the second stage
of our method.

4.4 The Second Stage: Temporal Refinement and Trajec-
tory Stream Labeling

The per-frame skeletal proposals from the first stage can be improved by using temporal
coherence. We use motion cues from a 3D patch trajectory stream: dense 3D point tracks
computed by the method of Joo et al. [98]. We find an association between each part trajectory
proposal and a subset of the patches in the trajectory stream, and use it to reduce motion
jitter, remove false detections, and fill in missing detections. The resulting labeled patch
trajectories also capture rich motion information representing the subtle deformations of the
surface for each body part (see Fig. 3.2f).

4.4.1 Patch Trajectory Stream Reconstruction

We can only observe surface motions, not the true motion of the underlying skeleton, so it is
not immediately apparent how best to enforce temporal consistency in the motion of body
parts. Clothing in particular makes the relationship between surface motion and body parts
difficult to model. To keep the use of priors and models to a minimum, we therefore choose
to measure surface motion independently from the underlying skeletal motion and postpone
all decisions about part-to-surface associations.

To represent surface motion, we use the method of [98] to track a dense 3D patch cloud—
a set of points with corresponding surface normal and a small spatial extent, representing
the surface locally—and estimate the motion of each of these patches. Instead of generating
the initial patches to track using SIFT matching and triangulation (as in [98]), we use the
depth maps from our 10 RGB+D sensors to generate an initial set of 3D patches. For a
single frame, a dense 3D point cloud is first generated from the depth maps, and planar local
patches centered on each point are initialized. The size of patches is manually determined by
considering image resolution and fixed for entire processes at 6cm×6cm. To find the normal
of each patch, we apply Singular Value Decomposition (SVD) to the coordinates of points
within a neighborhood (determined by Euclidean distance from the center point with the
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patch size as a threshold), and the least principal axis is selected as the normal direction. The
sign of the normal is disambiguated by considering camera visibility.

The remainder of the algorithm (3D patch tracking) is as described in [98]. As a brief
overview, a patch is represented by a triplet points (the center point, and two orthogonal
points on the patch plane), and it is tracked by projecting the triplet points on all views where
the target patch is visible. Optical flow tracking is performed in 2D on each point, and the
tracked 2D flows are triangulated into 3D. The core idea to fully leverage a large number of
views is to reason about the time-varying camera visibility of each patch. The visibility is
optimally estimated in a MAP framework that combines photometric consistency, motion
consistency, and visibility priors, see [98] for more details. For our results, we initialize a 3D
patch cloud every 20th frame, and track them backward and forward for 30 frames in each
direction. As output, we obtain a dense 3D patch trajectory stream, F = {fi}NF

i=1, where each
fi(t) ∈R3 is the time-varying position of a tracked patch.

4.4.2 Associating Part Trajectory Proposals and Trajectory Stream

Part trajectory proposals P̃uv represent the moving body parts of a single person, and are
given by the optimal assignment used to generate skeletal trajectory proposals. These part
trajectories lack temporal coherence because they are reconstructed independently in each
frame. However, the trajectory streams provide evidence of the motion of each limb, and can
be used to refine the motion of each body part. We therefore find an association between each
part trajectory proposal and a subset of patch trajectories. This can be seen as a semantic
labeling of the patch trajectory stream with the corresponding body parts (see Fig.3.2f).

Before performing this association, we first remove erroneous part detections which can
readily be identified as outliers. We find that a simple yet robust method is to use the depth
maps from the multiple RGB+D sensors. At any time instant, a part can be considered as
an outlier if it is outside of every surface in the dense point cloud. We simply test this by
checking whether a part proposal is in front of the measured depth in any view, and mark it
as erroneous if it is. This is a necessary but not sufficient condition because we test this from
only the 10 available depth map views. However, we find that this method works well in
practice and is efficient to implement. After identifying these outliers, we remove and treat
them as missing data. Then, we can assume that this filtered part trajectory only suffers from
relatively small jitter and occasionally missing data.

We associate a set of patch trajectories with a filtered part trajectory proposal if they
move rigidly and the patch normal is a match. Intuitively, the part should be located inside
the body surface, and, thus, a vector from the closest point on the part to the patch center
should have a similar direction as the patch normal—their inner product should be positive.
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For a part trajectory proposal, we only consider patches for which the normal satisfies this
criterion for the entire duration of the patch trajectory. As additional criteria, we compute
a measure of rigidity between a patch trajectory and a part trajectory proposal. We define
this as the difference between the minimum and maximum distance between them across all
frames t in which they overlap:

d(fi, P̃k
uv) = max

t
l
(

fi(t), P̃k
uv(t)

)
−min

t
l
(

fi(t), P̃k
uv(t)

)
,

where l(·, ·) is the orthogonal distance between the patch center and the line segment of the
body part, i.e.,

l
(

fi(t), P̃k
uv(t)

)
= min

α
∥αNku

u (t)+(1−α)Nkv
v (t)− fi(t)∥2.

Here, the set of time instants t satisfies that both the patch trajectory and part trajectory streams
are valid, and only patch trajectories i for which 0≤α≤1 at some time t are considered.
Intuitively, this cost approximates how rigidly they move together over time, going to
zero for completely rigid motion. Each part trajectory P̃k

uv is then associated with a set of
patch trajectories Fk

uv, for which the rigidity cost is less than a threshold, i.e., Fk
uv = {fi :

d(fi, P̃k
uv)≤10cm}. If a patch trajectory is selected by multiple body parts (e.g., a static

scene as an extreme case), the trajectory is associated with the body part with minimum
maxt l(fi(t), P̃k

uv(t)) distance. An example of this labeling is shown in Figure 3.2f.

4.4.3 Motion Refinement by Associated Patch Trajectories

From the set of patch trajectories Fk
uv associated to the part trajectory proposal P̃k

uv, we can
compute the rigid transform between subsequent time instances from t to t+1, T (t+1 | t),
and, progressively, to any frame t ′ by concatenating transformations between subsequent
frames, so that T (t ′ | t)P̃k

uv(t) represents the propagated part from time t to t ′. Using the
transformation it is possible to propagate a body part’s position to other time instants. Our
method uses the propagated parts to reduce jitter and fill in missing holes by averaging
multiple part locations propagated from different time instances. For a target time t, we can
produce multiple proposals for the same part, including the proposal from the first stage of
our method and propagated parts using the estimated transformations, creating a set

{T (t | t−n)P̃k
uv(t−n), · · ·, P̃k

uv(t), · · ·,T (t | t+n)P̃k
uv(t+n)}.

If there are elements in this set, we take the average. If the set is empty due to consistently
severe occlusions, we determine that the part at time t is still missing. In practice, we use n=1.
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This procedure can also be iterated multiple times (including patch trajectory re-association)
to fill in missing parts that are further than n frames from any part proposal. We iterate this
refinement until no more missing parts can be filled. After refinement, a node connected
to multiple body parts can have different locations corresponding to each of the averaged
parts, and we simply take the average to determine the final node locations. It should be
noted that our method is different from temporal smoothing (e.g., [97]). Instead, we use
an actual measurement of 3D motion rather than impose a motion prior, which prevents
over-smoothing even after several iterations.

4.5 Face and Hand Captures

In this section, we briefly describe the method to capture 3d motion of faces and hands
given reconstructed body landmarks. By projecting 3D landmark locations of head and
wrists on each view, approximate regions of hands and face are obtained. We then apply
2d face pose detector and 2D hand detector on each region to find 2D landmark locations.
Correspondences of landmarks across views are already given by construction, and final 3D
face and hand are reconstructed by triangulation with RANSAC.

We use the hand detector we present in [46]. The hand detector is based on the same
Convolutional Neural Network architecture of [80] which we used for 2D body pose
detection, but trained on a hand keypoint dataset generated by Multiview Bootstrapping
method proposed in [46]. Similarly, we also produce a 2D face detector using the same
CNN architecture and a face dataset by Multiview Bootstrapping in the Panoptic Studio.
We found that this method shows a comparable performance to the state-of-the-art methods
and outperforms them in profile views. Before applying detectors, occluded views are
excluded by considering the orthogonal distance from camera rays and body skeletons, where
thresholds is used to determine occlusion (15 cm for the metacarpals, 9 cm for the proximal
phalanges, and 5 cm for the remaining bones).

For a landmark location, we robustly triangulate it into a 3D location. We use RANSAC [100]
on points with confidence above a detection threshold λ . Additionally, we use a 4 pixel
reprojection error to accept RANSAC inliers. With this set of inlier views for point, we
minimize [101] the reprojection error to obtain the final triangulated position.

To improve robustness specifically for hands, we reconstruct entire fingers simultane-
ously. We triangulate all landmarks of each finger (4 points) at a time, and use the average
reprojection error of all 4 points to determine RANSAC inliers. This procedure is more
robust because errors in finger detections are correlated: e.g., if the knuckle is incorrectly
localized, then dependent joints in the kinematic chain—the inter-phalangeal joints and finger
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(a) Mafia (b) Ultimatum (c) Haggling (d) 007-Bang

Fig. 4.5 Example scenes of social game sequences. The reconstructed 3D skeletons from the
480 VGA views are projected on novel HD views.

Table 4.2 Processing time for one minute of data.

Procedure Time

Stage 1

(4.3.1) 2D pose detection (1 GPU) 40 h
(4.3.1-4.3.2) Node and part proposal recon. (1 GPU) 4 h
(4.3.3) Skeletal proposal reconstruction by DP 3 m
(4.3.3) Skeletal proposal optimization 11 m

Stage 2
(4.4.1) Trajectory stream recon. (400 CPU cores) 35 h
(4.4.2) Trajectory association and refinement 5 m

tip—are unlikely to be correct. This reduces the number of triangulated keypoints (because
the entire finger needs to be correct in the same view) but it further reduces the number of
false positives, which is more important so that we do not train with incorrect labels. A
similar approach is applied for face by grouping each eye, nose, and lip, and apply RANSAC
respectively.

4.6 Results

We quantitatively and qualitatively evaluate our method on various sequences captured in the
Panoptic Studio. In the quantitative evaluation, we empirically show how the large number
of views solves the challenging interaction capture problem; we compare performance using
varying number of cameras on the scenes with different number of people. In the qualitative
evaluation, we demonstrate the “model-free" advantage of our method by showing compelling
motion reconstruction results on subjects of diverse appearance, body shapes, and body sizes.

In this result section, we mainly focus on the performance of body motion capture, yet
qualitative results of 3D face and hand captures are shown.
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(a) Two people (b) Three people (c) Five people (d) Seven people

Fig. 4.6 Performance evaluation using Probability of Correct Keypoint (PCK) metric for
varying number and type of cameras on 160422 ultimatum1. We use the result of 480
VGA cameras after manually excluding outliers as ground truth. The X-axis of each graph
represents thresholds, and the Y-axis represents accuracy by the thresholds. Each graph is
generated for scenes with a different number of people. The results demonstrate that more
views (rather than higher resolution) are beneficial to improve accuracy, and the distinction
is more noticeable if the scene contains more people.

Table 4.3 Quantitative evaluation of the accuracy of our method on the 160422 ultimatum1
sequence.

Skel. # Node # Outlier Node # Node Acc. Skel. Acc.
81,829 1,227,435 8700 99.29% 93.55%

4.6.1 Processing Time

The time to process one minute of data (1500 frames) of 480 VGA views is summarized
in Table 4.2. We use different computing devices for procedures. A machine with Intel i7
3.4GHz processor and 32GB RAM is used for general processing, a GTX Titan X is used for
GPU computation, and a cluster server with 400 CPU cores (2.2GHz per processor) is used
for trajectory stream reconstruction.

In the first stage, most of the time is spent in running the 2D body pose detector. The
detector runs at about 5 frames per second on a single GPU, but due to the large number
of views (720K images per minute), processing a minute of video takes about 40 hours. In
practice, we use multiple GPUs to process multiple images in parallel. In the second stage,
the main computational bottleneck is the trajectory stream generation. Although they are
tracked in parallel, the running time is long due to the large number of patches at each time.
In our experiments, on average 15K patches are tracked per person.
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4.6.2 Performance Analysis 3D Body Motion Capture

We quantitatively evaluate the performance of our method for the 160226 ultimatum1 se-
quence by varying the number and type of cameras. We choose the ultimatum sequence
because it captures varying number of people (from two to seven people) in each time period,
which is suitable to study the relation between scene complexity and the number of cameras
needed to reach a desired performance. In this experiment, we only evaluate the first stage of
our method.

Performance using all VGA cameras: We first quantify the performance of our system
when all 480 VGA cameras are used. Due to the absence of ground truth data, we manually
annotate the correctness of the reconstructed 3D skeletons by verifying their projections in
multiple 2D views. We labeled a 3D joint node as an outlier if the node is projected outside
of the corresponding limb or far from the presumable target joint in multiple 2D views. We
exclude the period where people come in and out of the system, since at the moment body
parts lie on the edge of our system’s working volume. The result of the quantitative evaluation
for the 15 min of sequence is summarized in Table 4.3. There are 12 sessions in the sequence,
and 61 temporally associated skeletal structures are reconstructed. Among about 1.2 million
body joints, about 8.7K nodes are determined as outliers or missed (rejected by thresholds of
our system), showing 99.29% accuracy in node reconstruction. And, 93.55% out of about
82K 3D skeletons are correctly reconstructed without any incorrect joints. The majority of
the failures are caused by insufficient visibility of the target part. An example is the pose
holding hands behind one’s back near the wall of the system as shown in Figure 4.8 (left).
Although the hands are visible from few cameras, they are too close to be detected by the
pose detector. Interestingly, our method still reconstructs the hands using the “guessed" 2D
locations from 2D pose detector in frontal views, although the accuracy is limited as shown
in Figure 4.8.

Comparison with varying number of cameras: To evaluate the impact of the number
of views, we perform our method using varying number of cameras. The cameras are
uniformly sampled (except the 19 VGA camera case explained later); i.e., we sample the
next camera as the one furthest from all the already sampled cameras, and, thus, the selected
cameras are always a subset of the set of the larger number of cameras. To quantify the results,
we treat the result with 480 VGA cameras as ground truth after excluding the manually
annotated outliers. For evaluation, we only use every tenth frame to reduce computation time.
As an evaluation metric, we use the PCK (Probability of Correct Keypoint) metric, which is
commonly used to evaluate 2D pose detectors [94]. Here, we use 3D distance in physical
scale (cm) obtained from calibration data for the threshold of PCK, in contrast to the 2D
ratio of torso/head as in 2D pose detection cases [94]. Figure 4.6 shows the PCK accuracy by
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Fig. 4.7 Refinement result by the Stage 2 of our method on the 160226 mafia2 sequence.
The most erroneous node is selected. The graph represents the X coordinate of the node
across frames after the Stage 1 method (blue) and Stage 2 method (red). The gray regions
represent the frames where the part is missing in the stage 1 output. They are recovered via
the temporal propagation in the result of Stage 2.

varying the camera number on the scenes with different number of people. In all the results,
we find that using a larger number of views is beneficial. If the scene is simpler (e.g., the case
with two or three people), we observe that the results with a smaller number of cameras, e.g.,
160 cameras, show a similar performance with 480 cameras. However, if the scene becomes
more complicated, e.g., seven people, we see clearer gaps according to the camera numbers.
This results can be meaningfully used to design a multiple camera system to determine the
required number of cameras given a desired group size. For example, assuming that the
target scenes have about five people, we forecast that a system with 80 cameras can reach
about 94% of accuracy with a 2cm threshold.

Comparison with varying resolutions: As an additional evaluation, we perform a
similar experiment for different camera resolutions using the multiple HD cameras installed
in our system. Among 31 HD cameras, we use 19 HD cameras installed on the same panels
with VGA cameras3. To compose similar viewpoints, we choose the closest VGA cameras
from the selected 19 HDs. Additionally, we generate 19 QVGA inputs (320 × 240 resolution)
by resizing the selected VGA videos. Because the HD cameras are not perfectly synchronized
with VGAs, we interpolate the result from HDs into VGA time domain using the hardware
sync data. The performance of a same number of HDs, VGAs, and QVGAs is shown as
dashed lines in Figure 4.6. The result shows that the performance differences among them is
marginal, although HD views have about 7 time more pixels than VGAs and about 27 times
more pixels than QVGAs. The result demonstrates that the pose reconstruction performance
of our method is marginally affected by the resolution changes compared to the changes
by the number of views. Note that the integral of number of pixels in the 19 HD views are
equivalent to about 128 VGA views, and the result clearly shows that it is more advantageous

3We have 20 HD cameras installed on the same panels with VGAs, but we missed 1 HD camera due to the
hardware failure during the capture.
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Table 4.4 Quantitative comparison to [52] on the 150129 007Bang sequence.

Methods Frames Joints Outliers Missed Accuracy
Ours 300 22,500 1 0 99.99%
[52] 300 22,500 1871 2248 80.80%

to have more unique camera views rather than having higher resolutions, given a fixed pixel
budget. The main reason underlying this finding is that dealing with occlusions is more
crucial in interaction capture scenarios, and, in particular, higher resolution is not beneficial
in our method, since 2D joint localization accuracy is still limited by the 2D pose detector.

Comparison to multiple Kinects: We also compare our results with the result of multi-
ple Kinects. Since Kinect with its accompanying SDK is one of the most commonly used
sensors for markerless motion capture in various communities, using multiple Kinects can
be considered as an option to handle severe occlusions for interaction capture. However,
how to fuse multiple Kinect cues is not straightforward, and, thus, we naively fuse them
as follows. We first generate 3D skeletal proposals from all individual Kinects, and simply
find the best candidate closest to our ground truth data in Euclidean space, assuming that
an Oracle chooses the best one given the GT data. This can be considered an upper bound
of a naive multiple Kinects method. Since the keypoint locations of the Kinects are not
identical to the skeletons of our method, for a fair comparison, we adjust the Kinect skeletons
by finding an offset vector from each Kinect node toward our node of GT’s skeleton in a
person-centric coordinate system. As shown in Figure 4.6, the results of the Oracle Kinects
is limited, showing less than 80% accuracy at a 5cm threshold.

4.6.3 Refinement by Trajectory Stream

We compare the performance improvement of our refinement method (the second stage) over
the output of the first stage. We choose a challenging scene in 160226 mafia2 sequence
where the first stage of our method shows failures due to the erroneous 2D pose detection
results. To see the performance change, we plot the X coordinate of the most erroneous node
(right wrist of a subject) as shown in Figure 4.7. The frames denoted as gray regions are the
time when the nodes are missed due to the consistent 2D pose detector failures. It is shown
that our refinement method can recover the missing parts and also noticeably reduce the
motion jitter for the unstable frames. Note that our refinement method is not just smoothing
but based on the temporal transformation measured by a dense trajectory stream. Thus, it
does not suffer from over-smoothing, even after several iterations.
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4.6.4 Qualitative Evaluation For Body Motion Capture

We apply our method, producing about 3 hours of interaction capture results. Due to the
computation time, the second stage of our method is applied on a subset of the dataset; yet
the first stage of our method is applied on all the sequences4. Example results are shown
in Figure 4.9. Our result is fully automatic—given video streams and calibration data, our
method generates temporally associated 3D skeletons (and labeled patch trajectory stream
of each body part if the second stage is applied) for each individual without any human
supervision. Refer to the supplementary videos and the live 3D viewer on our website.

Group interaction capture: Our method produces motion capture results on various
social game scenarios performed by multiple people (up to 8 people). The number of
subjects in the scenes is automatically determined by our method, and allowed to vary
during the capture. The reconstructed results contain motions that frequently occur during
communication, such as crossed-arms-on-chest, resting-chin-on-hand, mouth-guard, hands-
on-back, hands-on-waist, and so on. In spite of their importance as non-verbal signals
transmitting a variety of messages, such motions get little attention by prior work. In
particular, severe topological changes and self-occlusions make it hard to apply 3D template-
based motion capture approaches. Our method reconstructs the motion of such challenging
scenes by fusing 2D pose detection cues and motion cues using a larger number of views,
and demonstrates a compelling performance for social interaction capture.

Robustness to appearance, body sizes, and topological changes: Our results demon-
strate robustness to subjects of diverse appearance, body types, and sizes. As mentioned,
subjects’ clothing is not controlled, and the captured sequences contain people with various
clothing such as black pants, thick padding jumpers, hoodies, short pants, scarfs, and so
on. During the discussions, they also unconsciously adjust their clothing, for example by
rolling up sleeves or relocating scarfs. The height of subjects varies from a two-year old
toddler to adults more than 190 cm tall. The “model-free" nature of our method enables us to
reconstruct their motions without changing any parameter. It demonstrates a major advantage
of our system for social behavior studies in that it can be easily applied for captures at scale,
without any laborious template generation or initial alignment step. Especially, the toddler
scene is challenging to “model-heavy" approaches, since instructing young children to be
stationary to generate their template models (e.g., laser scanning) may not be practical.

Other interesting scenes: We also demonstrate the performance of our method on other
atypical motion capture scenarios including musical performances (drummer and cellist)
and dancer sequences. Motion capture for musical performance is a good application for
markerless motion capture, because markers may interfere with their functional movements

4Results will be updated in our website, as they are processed.
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Fig. 4.8 Example failure cases. For each column, the first row shows the projection of
reconstructed 3D skeletons on a view where the red colored parts are manually annotated
outliers. The second row shows the 2D pose detection results. (Left) The hands are severely
occluded and only visible from few cameras where they are too close to be detected by 2D
pose detector. (Center) The left/right legs are confused in performing 2D pose detection,
which causes failures in our 3D inference. (Right) The toddler is not detected by the pose
detector, since he is severely occluded.

during the capture. Although the scenes are challenging due to the severe occlusions by
musical instruments, our method shows good performance in reconstructing the performer’s
subtle motions (e.g., the vibrato motion in the cellist sequences).

On the other hand, the dancer sequences contain fast motion and unusual poses. Due to
failures in reconstructing the trajectory stream for the extremely fast movement compared to
our relatively low frame rate cameras (25 Hz), we only apply the first stage of our method.
Separating reconstruction (Stage 1) from temporal refinement (Stage 2) is advantageous in
this case, because the first stage, based on per-frame reconstruction, is not affected by motion
magnitude and free from error accumulation. We can optionally apply temporal refinement
(Stage 2) based on the quality of trajectory stream to further refine the results. We find that,
however, in a few extremely unusual poses our method becomes unstable due to consistent
2D pose detection failures, which will be discussed in subsection 4.6.6.

4.6.5 Qualitative Evaluation For Hand and Face Motion Capture

The reconstruction results of 3D hands and faces are shown in the Figure 4.10 and 4.11. We
only use 31 HD views for the reconstruction due to the limited image resolution of VGA
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views. Compared to prior work on high-quality face reconstruction where entire cameras
mainly focus on a face [11], the cameras in our system have much wider field of views to
capture full body motion of multiple people, and, thus, the quality of our face reconstruction
is limited and produces only a fixed number of landmark locations (70 points determined
by 2D face detector). Yet, our system shows a reasonable performance in capturing facial
expressions of interacting people.

Our 3D hand capture is the first in capturing hand gestures of interacting multiple people
in a practical level, which is even challenging in state-of-the-art marker based motion capture
system. Especially, we also found that our hand capture shows a great performance in
capturing hand motion interacting with objects as shown in Figure 4.10, despite limited
camera resolutions. Reconstruction results in capturing full body motion of hands, body, and
faces of interacting multiple people are shown in Figure 4.11, which is also demonstrated for
the first time.

4.6.6 Discussion

A limitation of our method is the dependency on a 2D pose detection method. State-of-the-art
pose detectors are weak in detecting unusual poses and closely located people (as shown
in Fig. 4.8). We also find that the pose detector sometimes gets confused in distinguishing
left-right limbs (as shown in the center of Figure 4.8). Although our method can overcome
these issues by fusing cues across views via spatial voting and across time via associating
trajectory streams, if the 2D body pose detectors fail consistently, our method is unable to
recover. The second limitation is the long computation time to process the large number of
views. However, depending on the application, the computation time can be greatly reduced
by using a smaller number of cameras with a trade-off in accuracy (see Fig. 4.6).
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Fig. 4.9 Our method is performed on various scenes including social interactions of multiple
people. (Row 1) Reprojected skeletons on novel HD views; (Row 2) Rendered 3D skeletons
in novel 3D views with node trails over time; (Row 3) Labeled 3D trajectories representing
articulated non-rigid body parts with same color representations as in Figure 3.2; (Row 4-7)
Reprojected skeletons on novel HD views of various scenes.
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Fig. 4.10 Qualitative results on hand and body motion capture. (First 4 rows) (a) Reprojected
triangulation. (b) 3D hands in context. (c) Metric reconstruction. (d) 2D detections from hand
pose detector presented in [46]. (Last 4 rows) Hand and body motion capture of interacting
multiple people.
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Fig. 4.11 Capturing anatomical landmarks from full body parts (face, body, and hand). (Left)
An example scenes overlaid by the projection of reconstructed results (Right) Reconstruction
results in 3D views.





Chapter 5

Total Body Motion Capture

We communicate tremendous amounts of information with the subtlest movements. Between
a group of interacting individuals, gestures such as a gentle shrug of the shoulders, a quick
turn of the head, or an uneasy shifting of weight from foot to foot, all transmit critical
information about the attention, emotion, and intention to observers. Notably, these social
signals are usually transmitted by the organized motion of the whole body: with facial
expressions, hand gestures, and body posture. These rich signals layer upon goal-directed
activity in constructing the behavior of humans, and are therefore crucial for the machine
perception of human activity.

However, there are no existing systems that can track, without markers, the human body,
face, and hands simultaneously in a single mesh structure. Current markerless motion capture
systems focus at a particular scale or on a particular part. Each area has its own preferred
capture configuration: (1) torso and limb motions are captured in a sufficiently large working
volume where people can freely move [20–23]; (2) facial motion is captured at close range,
mostly frontal, and assuming little global head motion [11–15]; (3) finger motion is also
captured at very close distances from hands, where the hand regions are dominant in the
sensor measurements [16–19]. These configurations make it difficult to concurrently analyze
the broad spectrum of social signaling.

To overcome this sensing challenge, we present a novel generative body deformation
model that has the ability to express the motion of each principal body part. In particular,
we describe a procedure to build an initial body model, named “Frank", by seamlessly
consolidating available part template models [102, 103] into a single skeleton hierarchy. To
fit this model to data, we leverage keypoint detection (e.g., faces [41], bodies [80, 104, 105],
and hands [46]) in multiple views to obtain 3D keypoints which are robust to multiple people
and object interactions. We fit the “Frank” model to a capture of 70 people, and learn a
new deformation model, named “Adam", capable of additionally capturing variations of hair
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and clothing with a simplified parameterization. We present a method to capture the total
body motion of multiple people with the 3D deformable model. Finally, we demonstrate
the performance of our method on various sequences of social behavior and person-object
interactions, where the combination of face, limb, and finger motion emerges naturally.

The output generated by this method provides a dense correspondence across individuals
from the surface of bodies. Although our current reconstruction framework is largely
dependent to the measurement of sparse anatomical landmarks, it provides a way to enable
dense social signal measurement by defining thousands of corresponding 3D keypoints for
each individual. Moreover, the motion capture output of total motion capture is in the same
form (joint rotation angles) as in widely used motion capture tools [24], which can be directly
used for many graphics applications such as 3D animation and virtual reality. As another key
advantage especially for social interaction modeling, the total motion capture output allows
us to decouple the body motion cues from the identity specific cues (shape).

5.1 Related Work

Marker-based motion capture systems that track retro-reflective markers [24, 106] are the
most widely used method to capture human body motion. However, in addition to a laborious
process of attaching markers on subjects, these methods still suffer from major limitations
including: (1) a necessity of sparsity in marker density for reliable tracking, which limits the
spatial resolution of motion measurements [107]; (2) a limitation in automatically handling
occluded markers which requires expensive manual clean-up; and (3) markers on the faces,
bodies, and hands hinder participants from engaging in natural social interaction. Due to
these limitations, capturing the total body motion of interacting people is still a challenging
problem even in state-of-the-art motion capture systems [24].

Markerless motion capture methods have been explored over the past two decades to
achieve the same goal of motion capture systems, but they tend to implicitly admit that
their performance is inferior to their marker-based counterpart, advocating their “markerless”
nature as the major advantage. Most markerless motion capture methods largely focus on the
motion of the torso and limbs. The standard pipeline is based on a multiview camera setup
and tracking with a 3D template model [30, 108–112, 92, 113, 22, 20, 23]. In this approach,
motion capture is performed by aligning a 3D template model to the measurements, which can
include colors, textures, silhouettes, point clouds, and keypoints. Recent methods exploit a
generative deformable body model [114, 102, 115] to express both shape and body variations
of humans. Since these body models often assume minimum clothing for subjects, explicit
modeling for clothing is needed to capture clothed subjects [116, 117]. Recent advances in
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2D keypoint detection [105, 104, 80] make it possible to reliably reconstruct 3D keypoints
in a multiview setup, where a 3D model can be fitted [23, 52, 53]. A specific strength of
learning-based detectors is that they can provide a “guess" for occluded parts, based on the
spatial human body configurations learned from a large-scale 2D pose dataset. Note that we
differentiate markerless motion capture approaches, producing motion parameters as output,
from multiview performance capture approaches [25, 26] which aim to obtain detailed surface
shapes by free-form mesh deformations. With the introduction of commodity depth sensors,
single-view depth-based body motion capture also became a popular direction [27, 93]. More
recently, a collection of approaches aims to reconstruct 3D skeletons directly from monocular
images, either by fitting 2D keypoint detections with a prior on human pose [118, 119] or
getting even closer to direct regression methods [120–122].

In all earlier work, face and hand motion captures are often considered as separate research
domains. Facial scanning and performance capture has been greatly advanced over the last
decade. There exist multiview methods showing excellent performance on high-quality facial
scanning [11, 12] and facial motion capture [13–15]. Recently, lightweight systems based on
a single camera show compelling performance by leveraging a morphable 3D face model on
2D measurements [123, 41, 124, 125, 103, 126, 127]. Most of these methods are based on
a deformable 3D face rig such as the method of Cao et al. [103]. Hand motion capture is
mostly led by single depth-sensor based methods [16, 128, 17, 129–134, 18, 19, 135], with
few exceptions based on multi-view systems [136, 133, 137]. Recently, 2D hand keypoint
detection and the use of it to obtain 3D hand keypoints in a multiview setup are introduced
by Simon et al. [46]. Notably, a generative 3D model that can express body and hands was
also introduced by Romero et al. [137].

In contrast, this paper presents the first approach for “total” markerless motion capture of
multiple interacting people, producing a parameterized representation that jointly captures
the time-varying body pose, hand pose, and facial expressions of each of the interacting
participants.

5.2 Frank Model

The motivation for building the Frank1 body model is to leverage existing part models:
SMPL [102] for the body, FaceWarehouse [103] for the face, and an artist-defined hand rig
(shown in Fig. 5.1). Each of these capture shape and motion details at an appropriate scale
for the corresponding part. This choice is not driven merely by the free availability of the
component models: note that due to the trade-off between image resolution and field of view

1Frank is an homage to a certain Modern Prometheus.
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Fig. 5.1 Part models and the Frank model. (a) The body model [102]; (b) the face model [103];
and (c) a hand rig. In (a-c), the red dots have corresponding 3D keypoints reconstructed by
detectors; (d) Body only model; (e) Face and hand models substitute the corresponding parts
of the body model. Alignments are ensured by ΓΓΓs; and (f) The blending matrix C is applied
to produce a seamless mesh.

of today’s 3D scanning systems, scans used to build detailed face models will generally be
captured using a different system than that used for the rest of the body. For our model, we
merge all transform bones into a single skeletal hierarchy but keep the native parameterization
of each component part to express identity and motion variations. As the final output, the
Frank model produces motion parameters capturing the total body motion of humans, and
generates a seamless mesh by blending the vertices of the component meshes.

5.2.1 Stitching Part Models

The Frank model MU is parameterized by motion parameters θθθ
U , shape (or identity) parame-

ters φφφ
U , and a global translation parameter tU ,

VU = MU(θθθU ,φφφU , tU), (5.1)
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where VU is a seamless mesh expressing the motion and shape of the target subject. The
motion and shape parameters of the model are a union of the part models’ parameters:

θθθ
U = {θθθ

B,θθθ F ,θθθ LH ,θθθ RH}, (5.2)

φφφ
U = {φφφ

B,φφφ F ,φφφ LH ,φφφ RH}, (5.3)

where the superscripts represent each part model: B for the body model, F for the face
model, LH for the left hand model, and RH for the right hand model. Each of the component
part models maps from a subset of the above parameters to a set of vertices, respectively,
VB∈RNB×3, VF ∈RNF×3, VLH ∈RNH×3, and VRH ∈RNH×3, where the number of vertices of
each mesh part is NB=6890, NF=11510, and NH=2068. The final mesh of the Frank model,
VU∈RNU×3, is defined by linearly blending them with a matrix C ∈RNU×(NB+NF+2NH):

VU = C
[ (

VB)T (VF)T (VLH)T (VRH)T
]T

, (5.4)

where T denotes the transpose of a matrix. Note that VU has fewer vertices than the sum
of part models because there are redundant parts in the body model (e.g., face and hands of
the body model). In particular, our final mesh has NU=18540 vertices. Fig. 5.1 (e) shows
the part models that are aligned, and (f) shows the final mesh topology of the Frank model
after applying the the blending matrix C at the mean shape in the rest pose. The blending
matrix C is a very sparse matrix; most rows have a single column set to one with zeros
elsewhere and simply copy the vertex locations from the corresponding part models with
minimal interpolation at the seams.

In the Frank model, all parts are rigidly linked by a single skeletal hierarchy, which is
crucial as an output of motion capture. This unification is achieved by substituting the hands
and face branches of the SMPL body skeleton with the corresponding skeletal hierarchies of
the detailed part models. All parameters of the Frank model are jointly optimized for motion
tracking and identity fitting. The parameterization of each of the part models is detailed in
the following sections.

5.2.2 Body Model

For the body, we use the SMPL model [102] with minor modifications. In this section, we
summarize the salient aspects of the model in our notation. The body model, MB, is defined
as follows,

VB = MB(θθθ B,φφφ B, tttB), (5.5)
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with VB = {vB
i }NB

i=1. The model uses a template mesh of NB=6890 vertices, where we denote
the i-th vertex as vB

i ∈ R3. The vertices of this template mesh are first displaced by a set
of blendshapes describing the identity or body shape. Given the vertices in the rest pose,
the posed mesh vertices are obtained by linear blend skinning (LBS) using transformation
matrices TB

j ∈ SE(3) for each of the J joints,

vB
i = I3×4 ·

JB

∑
j=1

wB
i, jT

B
j

(
vB0

i +∑
Kb
k=1 bk

i φ B
k

1

)
, (5.6)

where bk
i ∈R3 is the i-th vertex of the k-th blendshape, φ B

k is the k-th shape coefficient in
φφφ

B ∈ RKb with Kb=10 the number of identity body shape coefficients, and vB0
i is the i-th

vertex of the mean shape. The transformation matrices TB
j encode the transform for each

joint j from the rest pose to the posed mesh in world coordinates, which is constructed by
traversing the skeleton hierarchy from the root joint with pose parameter θθθ

B (see [102]). The
j-th pose parameter θ B

j is the angle-axis representation of the relative rotation of joint j with
respect to its parent joints. wB

i, j is the weight with which transform TB
j affects vertex i, with

∑
JB

j=1 wB
i, j=1 and I3×4 is the 3×4 truncated identity matrix to transform from homogeneous

coordinates to a 3 dimensional vector. We use JB=21 with θθθ
B∈R21×3, ignoring the last

joint of each hand of the SMPL model. For simplicity, we do not use the pose-dependent
blendshapes2.

5.2.3 Face Model

As a face model, we build a generative PCA model from the FaceWarehouse dataset [103].
Specifically, the face part model, MF , is defined as follows,

VF = MF(θθθ F ,φφφ F ,TF), (5.7)

with VF = {vF
i }NF

i=1, where the i-th vertex is vF
i ∈ R3, and NF=11510. The vertices are

represented by combining shape and expression subspaces:

v̂F
i = vF0

i +
K f

∑
k=1

fk
i φ

F
k +

Ke

∑
s=1

es
i θ

F
s (5.8)

where, as before, vF0
i denotes i-th vertex of the mean shape, and φ F

k and θ F
s are the k-th face

identity (shape) and s-th facial expression (pose) parameters respectively. Here, fk
i ∈R3 is

2For our target sequences, the modeling error between the SMPL model [102] and the 3D surface measure-
ments is dominated by clothing artifacts, which the pose-blendshapes were not trained on.
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the i-th vertex of the k-th identity blendshape (K f = 150), and es
i ∈R3 is the i-th vertex of

the s-th expression blendshape (Ke = 200).
Finally, a transformation TF brings the face vertices into world coordinates. To ensure

that the face vertices transform in accordance to the rest of the body, we assume that the
mean face vF0

i is aligned with the body mean shape as shown in Fig. 5.1, which is manually
done in building the model. This way, we can apply the transformation of the body model’s
head joint TB

j=F(θθθ
B) as a global transformation for the face model in Eq. 5.9. However,

to keep the face in alignment with the body, an additional transform matrix ΓΓΓ
F ∈ SE(3) is

required to compensate for displacements in the root location of the face joint due to body
shape changes in Eq. 5.6.

Finally, each face vertex position is given by:

vF
i = I3×4 ·TB

j=F ·ΓΓΓF

(
v̂F

i

1

)
, (5.9)

where the transform ΓΓΓ
F , which is directly determined by the body shape parameters φφφ

B,
aligns the face model with the body model.

5.2.4 Hand Model

We use an artist-rigged hand mesh. Our hand model has JH=16 joints and the mesh is again
deformed via linear blend skinning. The hand model has a fixed shape, but we introduce
scaling parameters for each bone to allow for different finger sizes. The transform for the
j-th joint is parameterized by the Euler angle rotation with respect to its parent, θθθ

H
j ∈R3,

and an additional anisotropic scaling factor along each axis, φφφ
H
j ∈R3. Specifically, the linear

transform for the j-th joint in the bone’s local reference frame becomes eul(θθθ H
j ) ·diag(sssH

j ),
where eul(θθθ H

j ) converts from an Euler angle representation to a 3×3 rotation matrix and
diag(φφφ H

j ) is the 3× 3 diagonal matrix with the X ,Y ,Z scaling factors φ H
j on the diagonal.

The vertices of the hand in world coordinates are given by LBS with weights wH
i, j:

vH
i = I3×4 ·TB

j=H ·ΓΓΓH ·
J

∑
j=1

wH
i, jT

H
j

(
vH0

i

1

)
. (5.10)

where vH0
i denotes i-th vertex of the mean shape , TH

j is each bone’s composed transform
(with all parents in the hierarchy), TB

j=H ∈ SE(3) is the transformation of the corresponding
hand joint in the body model, and ΓΓΓ

H is the transformation that aligns the hand model to the
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body model. As with the face, this transform depends on the shape parameters of the body
model.

5.3 Motion Capture with Frank

We fit the Frank model to data to capture the total body motion, including the major limbs, the
face, and fingers. Our motion capture method relies heavily on fitting mesh correspondences
to 3D keypoints, which are obtained by triangulation of 2D keypoint detections across
multiple camera views. To capture shape information we also use point clouds generated by
multiview stereo reconstructions. Model fitting is performed by an optimization framework
to minimize distances between corresponded model joints and surface points and 3D keypoint
detections, and iterative closest point (ICP) to the 3D point cloud. Note that more details are
provided in the supplementary material.

5.3.1 3D Measurements

We incorporate two types of measurements in our framework as shown in Fig. 5.2: (1)
corresponded 3D keypoints, which map to known joints or surface points on the mesh models
(see Fig. 5.1), and (2) uncorresponded 3D points from multiview stereo reconstruction, which
we match using ICP.

3D Body, Face, and Hand Keypoints: We use the OpenPose detector [47] in each
available view, which produces 2D keypoints on the body with the method of Cao et al. [104],
and hand and face keypoints using the method of Simon et al. [46]. 3D body skeletons are ob-
tained from the 2D detections using the method of [53], which uses known camera calibration
parameters for reconstruction. The 3D hand keypoints are obtained by triangulating 2D hand
pose detections, following the method of [46], and similarly for the facial keypoints. Note
that subsets of 3D keypoints can be entirely missing if there are not enough 2D detections for
triangulation, which can happen in challenging scenes with inter-occlusions or motion blur.

3D Feet Keypoints: An important cue missing from the OpenPose detector is keypoints
on the feet. For motion capture, this is an essential feature to accurately determine the
orientation of the feet. We therefore train a keypoint detector for the tip of the big toe, the
tip of the little toe, and the ball of the foot. We annotate these 3 keypoints per foot in each
of around 5000 person instances of the COCO dataset, and use the architecture of Wei et
al. [80] with a bounding box around the feet determined by the 3D body detections. We also
apply multiview bootstrapping in the Panoptic Studio to improve the quality, as described by
Simon et al. [46].
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Fig. 5.2 Fitting Frank: The optimization takes, as input, (a) 3D keypoints, and (b) point
clouds, and produces (c) a fitted skeleton and mesh as output.

3D Point Clouds: We use the commercial software RealityCapture [138] to obtain 3D
point clouds from the multiview images, with associated point normals.

5.3.2 Objective Function

We initially fit every frame in the sequence independently. For clarity, we drop the time index
from the notation and describe the process for a single frame, which optimizes the following
cost function:

E
(
θθθ

U ,φφφU , tttU)= Ekeypoints +Eicp +Eseam +Eprior (5.11)

We use Levenberg-Marquardt with the Ceres Solver library [101] with multiple stages to
avoid local minima. See the supplementary material for the details.

Anatomical Keypoint Cost: The term Ekeypoints matches 3D keypoint detections, which
are in direct corresponce to our mesh models. This term includes joints (or end effectors) in
the body and hands, and also contains points corresponding to the surface of the mesh (e.g.,
facial keypoints and the tips of fingers and toes). Both of these types of correspondence are
expressed as combinations of vertices via a regression matrix J∈RC×NU

, where C denotes
the number of correspondences and NU is the number of vertices in the model. Let D denote
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the set of available detections in a particular frame. The cost is then:

Ekeypoints = λkeypoints ∑
i∈D

||JiV−yT
i ||2, (5.12)

where Ji indexes a row in the correspondence regression matrix and represents an interpolated
position using a small number of vertices, and yi∈R3×1 is the 3D detection. The λkeypoints is
a relative weight for this term.

ICP Cost: The 3D point cloud measurements are not a priori in correspondence with
the model meshes. We therefore establish their correspondence to the mesh using Iterative
Closest Point (ICP) during each solver iteration. We find the closest 3D point in the point
cloud to each of the mesh vertices, and compute the point-to-plane residual, i.e., the distance
along the normal direction,

Eicp = λicp ∑
v j∈VU

n(x j∗)
T (x j∗ −v j), (5.13)

where xi∗ is the closest 3D point to j-th vertex v j, n(·) ∈R3 represents the point’s normal,
and λicp is a relative weight for this term.

Seam Constraints: The part models composing the Frank model are rigidly linked by
the skeletal hierarchy. However, the independent surface parameterizations of each of the
part models may introduce discontinuities at the boundary between parts (e.g., a fat arm with
a thin wrist). To avoid this artifact, we encourage the vertices around the seam parts to be
close by penalizing differences between the last two rings of vertices around the seam of
each part, and the corresponding closest point in the body model in the rest pose expressed
as barycentric coordinates.

Prior Cost: Depending on the number of measurements available in a particular frame,
the set of parameters of MU may not be determined uniquely (e.g., the width of the fingers).
More importantly, the 3D point clouds are noisy and cannot be well explained by the model
due to hair and clothing, which are not captured by the SMPL and FaceWarehouse meshes,
resulting in erroneous correspondences during ICP. Additionally, the joint locations of
the models are not necessarily consistent with the annotation criteria used to train the 2D
detectors. We are therefore forced to set priors over model parameters to avoid the model
from overfitting to these sources of noise, Eprior = EF

prior +EB
prior +EH

prior. The prior for each
part is defined by corresponding shape and pose priors, for which we use zero-mean standard
normal priors for each parameter except for scaling factors, which are encouraged to be close
to 1.
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Fig. 5.3 Regressing detection target 3D positions. (Left) The template model is aligned with
target object; (Mid.) The torso joints of the template model (magenta) have discrepancy from
the joint definitions of 3D keypoint detection (cyan); (Right) The newly regressed target
locations (green) are more consistent with 3D keypoint detections.

5.4 Creating Adam

We derive a new model, Adam, enabling total body motion capture with a simpler parame-
terization than the part-based Frank model. In particular, this new model has a single joint
hierarchy and a common parameterization for all shape degrees of freedom, tying together
the face, hand, and body shapes and avoiding the need for separate part parameterizations
or seam constraints. To build the model, it is necessary to align the reconstructed meshes
with all body parts (face, body, and hands) of diverse subjects where the model can learn the
variations. To do this, we leverage our Frank model and apply it on a dataset of 70 subjects
where each of them performs a short range of motion in a multiview camera system. We
select 5 frames for each person in different poses, resulting in 350 meshes, and reconstruct
them with our Frank model, producing aligned meshes with joint locations to build Adam.
Because we derive the model from clothed people, the blendshapes explain variations of
clothing at a coarse level.

5.4.1 Fitting Clothes and Hair

The Frank model captures the shape variability of human bodies and faces, but does not
account for clothing or hair, since it keeps the original model space of part models ([102]
and [103]). To learn a new set of linear blendshapes that better capture the rough geometry
of clothed people and also roughly model hair, we need the meshes to match the geometry
of the source data more accurately. For this purpose, we deform the meshes outside of the
shape-space along each the normal direction of each vertex. For each vertex vi in the Frank
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model, the deformed mesh vertex ṽi is represented as:

ṽi = vi +n(vi)δi, (5.14)

where δi ∈R is a scalar displacement meant to compensate for the discrepancy between the
Frank model vertices and the 3D point cloud, along the normal direction at each vertex. We
pose the problem as a linear system,

(
NT

(WLN)T

)
∆ =

(
(P−VU)T

0

)
, (5.15)

where ∆ ∈ RNU
contains the stacked per-vertex displacements, VU are the vertices in the

Frank model, P ∈ RNU×3 are corresponding point cloud points, N ∈ RNU×3 contains the
mesh vertex normals, and L ∈RNU×NU

is the Laplace-Beltrami operator to regularize the
deformation. We also use a diagonal weight matrix W ∈RNU×NU

to avoid large deformations
where the 3D point cloud has lower resolution than the original mesh, such as details in the
face and hands.

5.4.2 Detection Target Regression

There exists an important discrepancy between the joint locations of the LBS model (i.e.,
the 3D centers of rotation for bone deformation) and the location of the keypoint detections
(which come from manually annotated guesses of where the anatomical joints are in 2D
images). This is shown in Fig. 5.3. This difference has the effect of pulling the model towards
a bad fit even while achieving a low keypoint cost, Ekeypoints, especially for shoulders and
hips. We alleviate this problem by computing a new regression function, ĴA ∈RJA×NU

, which
relates the vertices in the body model to the expected location of 3D keypoint detections.
However, to be able to learn these regressors, we require instances of the fitted model vertices
as well as the 3D keypoint detections.

Therefore, we first fit the Frank model (with additional shape variations) using the
original joint locations as detection targets, and obtain aligned meshes across all subjects.
Based on these outputs, we can build the regression matrix using the locations of 3D
keypoint measurements as targets instead of Frank model’s joint locations. Similar to the
joint regression in SMPL [102], we first select a subset of vertices in the proximity of
each detection target, and estimate a fixed, sparse linear combination of these vertices that
approximates the location of the 3D keypoint across all fitted meshes. This optimization is
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posed as an L1-regularized least-squares problem with non-negative constraints, where we
additionally impose that the vertex weights sum to one, resulting in an interpolation.

The results are shown in Fig. 5.3. Note that this new regressor is used only for the
optimization in Eq. (5.12), whereas the original joint regressor from SMPL [102], JA, is
used for LBS. However, we also add rows to the joint regression matrix to account for
the additional finger joints, which we solve for in the same way. The resulting matrix is
JA ∈RJA×NU

where NU is the number of vertices of Adam (the same as Frank) and JA = 61 is
the number of joints in Adam model including 21 body joints and 20 finger joints (including
5 finger tips) for each hand.

5.4.3 Building the Shape Deformation Space

After model fitting with ∆ displacement, we warp each frame’s surface to the rest pose,
applying the inverse of the LBS transform. With the fitted surfaces warped to this canonical
pose, we do PCA analysis to build a joint linear shape space that captures shape variations
across the entire body. As in Section 5.2.3, we separate the expression basis for the face and
retain the expression basis from the FaceWarehouse model, as our MVS point clouds are of
too low resolution to fit facial expressions.

The Adam model is parameterized as:

MA(θθθ A,φφφ A, tttA) = VA (5.16)

with VA = {vA
i }NA

i=1 and NA=18540 which is equal to the vertices in Frank, NU . As in SMPL,
the vertices of this template mesh are first displaced by a set of blendshapes in the rest pose,
v̂A

i = vA0
i +∑

KA
k=1 sk

i φ A
k , where sk

i ∈R3 is the i-th vertex of the k-th blendshape, φ A
k is the k-th

shape coefficients of φφφ
A ∈ RKb , and KA = 40 is the number of identity coefficients, vA0 is

the mean shape and vA0
i is its i-th vertex. Note that these blendshapes now capture variation

across the face, hands, and body. These are then posed using LBS as in Eq. (5.6) after
obtaining joint locations by the joint regressor matrix JA.

5.4.4 Tracking with Adam

The cost function to capture total body motion using Adam is similar to Eqn. 5.11 without
the seam term:

E
(
θθθ

A,φφφ A, tttA)= Ekeypoints +Eicp +Eprior. (5.17)
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Fig. 5.4 (Top) The silhouette from different methods overlayed with ground-truth. The
ground truth is drawn in the red channel and the rendered silhouette masks from each model
are drawn in the green channel. Thus, the correctly overlapped region is shown as yellow
color. (Bottom) Silhouette accuracy compared to the ground truth silhouette.

However, Adam is much more amenable to optimization than Frank: it has a single set
of unified shape and pose parameters for all parts, and does not require seam constraints
between disparate models.

5.5 Results

We perform total motion capture using our two models, Frank and Adam, on various chal-
lenging sequences. For experiments, we use the dataset captured in the CMU Panoptic
Studio [52, 53]. We use 140 VGA cameras to reconstruct 3D body keypoints, 480 VGA
cameras for feet, and 31 HD cameras for faces and hands keypoints, and 3D point clouds.
We compare the fits produced by our models with the simplified3 SMPL model [102].

3In all our comparison, we disabled the pose-dependent blendshapes of SMPL, and thus here SMPL model
means the body part of Frank.
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Table 5.1 Accuracy of Silhouettes from different models

SMPL[102] Frank Frank ICP Adam ICP
Mean 84.79% 85.91% 87.68% 87.74%
Std. 4.55 4.57 4.53 4.18

5.5.1 Quantitative Evaluation

We evaluate how well each model can match a moving person by measuring overlap with the
ground truth silhouette across 5 different viewpoints for a 10 second sequence. To obtain the
ground truth silhouette, we run a background subtraction algorithm using a Gaussian model
for the color of each pixel, with post-processing by morphological transforms to remove
noise. As an evaluation metric, we compute the percentage of overlap compared to the union
between the GT silhouettes and the rendered forground masks after fitting each model. Here,
we compare the fitting results of 3 different models: SMPL, our Frank, and our Adam models.
The results are shown in Fig. 5.4 and Table 5.1. We first compare accuracy between SMPL
and Frank model by using only 3D keypoints as measurement cues. The major source of
improvement of Frank over SMPL is in the articulated hand model (by construction, the
body is almost identical). Including ICP term as cues provides better accuracy. Finally in
the comparison between our two models, they show almost similar performance. Ideally we
expect Adam to outperform Frank because it has more expressive power for hair and clothing,
and it shows better performance for certain body shapes (frame 50-75 in Fig. 5.4). However,
Adam sometimes produces artifacts showing lower accuracy: it tends to generate thinner legs,
mainly due to poor 3D point cloud reconstructions in the training data4. However, Adam is
simpler for total body motion capture and has potential to be improved once a large dataset is
available with a more optimized capture setup.

5.5.2 Qualitative Results

We run our method on sequences where face and hand motions naturally occur. The sequences
include short range of motion for 70 people used to build Adam, social interactions of multiple
people, a furniture building sequence with dexterous hand motions, musical performances
(cello and guitars), and commonly observable daily motions such as typing. Most of these
sequences are rarely demonstrated in previous markerless motion capture methods since
capturing subtle details is key to achieve realism. Example results are shown in Figure 5.5 but
are best seen in the accompanying videos. Here, we also qualitatively compare our models
(in silver color for Frank, and gold for Adam) with SMPL (without pose-blendshapes, in

4Due to dark clothing combined with fewer camera views of the legs.
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pink) [102]. Note that total body motion capture based on our models produces more realism
by capturing subtle details from the hands and faces.

5.6 Discussion

We present the first markerless method to capture total body motion including facial expres-
sion, body motion from torso and limbs, and hand gestures at a distance. To achieve this
result, we present two types of models, Frank and Adam, which can express motion in each
of the parts. Our reconstruction results show compelling and realistic results, even when
using only sparse 3D keypoint detections to drive the models. As a current limitation of
our system, Adam lacks expressive power in surface details due to the limited number of
subjects in training. However, the major value of Adam model over Frank lies in its simpler
representation to capture total body motion, which can be useful for other applications.

There are two interesting points our paper raises. First, markerless hand motion capture,
often considered too challenging compared to body and face captures, shows better localiza-
tion quality in our results. Body joints are located inside the body and are hard to localize for
clothed subjects, and the accuracy of face reconstruction greatly decreases once the face is
not facing any camera. However, hands are often bare and the hand keypoint detector [46]
provides guessed measurements with high confidence even in self-occlusions, which can be
fused in multiple views. Second, our results show a potential that markerless motion capture
can eventually outperform its marker-based counterpart. Marker-based methods strongly
suffer from occlusions, making it hard to capture both body and hands together, while
our method can still exploit measurements for occluded parts by learning-based keypoint
detectors.
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Fig. 5.5 Total body reconstruction results on various human body motions. For each example
scene, the fitting results from three different models are shown by different colors (pink for
SMPL [102], silver for Frank, and gold for Adam).





Part III

Modeling Social Signals





97

“We respond to gestures with an
extreme alertness and, one might almost
say, in accordance with an elaborate and
secret code that is written nowhere,
known by none, and understood by all"

— Edward Sapir [139]





Chapter 6

A Large-Scale Social Interaction Corpus

Availability of a large-scale dataset is essential to computationally investigate the nonverbal
communication in a data-driven manner. Despite existing datasets that provide measurements
for human motion and behaviors [34, 35, 83–85, 140], there is no dataset that satisfies the
following core requirements for understanding nonverbal human behaviors: (1) capturing
3D full body motion with a broad spectrum of nonverbal cues (including face, body, and
hands); (2) capturing signals of naturally interacting groups (more than two people to include
attention switching); and (3) collecting the data at scale. The limited availability of the
dataset motivates us to build a new dataset that contains social interactions among hundreds
of interacting groups with a broad spectrum of 3D body motion measurements. The key
properties of our dataset are as follows:

• Our dataset contains naturally interacting multiple people in a negotiation game sce-
nario, where the game is carefully designed to induce natural and spontaneous interac-
tion

• Participants are randomly recruited

• No behavioral restriction is instructed to participants during the capture

• A broad spectrum of social signals, including the motion from faces, bodies, and hands,
are measured using our markerless motion capture (Chapters 4 and 5)

• Our dataset contains synchronized multiple modalities, including RGB videos from
over 500 views, depth maps from 10 RGB+D sensors, and sound from 23 microphones

• Voice signals of individuals are recorded via wireless and wired microphones, and
speaking status and timing of each subject are manually annotated
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• 3D point clouds are provided by fusing the depth maps from 10 RGB+D sensors

Our dataset provides a new opportunity to investigate the dynamics of various inter-
personal nonverbal behavioral cues emerging in social situations. Our dataset is captured
under a university-approved IRB protocol1 and publicly released for research purposes, with
agreements from all participants2.

6.1 Related Work

Recognizing emotions from social signals is one of the most popular directions as a way to
analyze nonverbal behaviors. Most prior approaches in this domain focus on deciphering
the semantic meanings of social signals, which are often annotated into a few discrete
categories [141] or a set of latent dimensions[142–144] (see a recent survey [145]). A lot
of datasets have been presented to tackle this problem [146–151]. Recognizing emotions
from body gestures is a less investigated field. Almost all databases in this domain are
collected from actors where the actors are instructed to behave certain emotions [38–40].
Several approaches demonstrate that not just facial expression but the context of the scene
including body gestures is important in emotion perception [45, 44]. The dataset collected
for this direction contains a single subject only, and thus they are not applicable for modeling
nonverbal communication.

A few datasets contain the scenes of socially interacting groups [152–155]. The interac-
tions in these datasets are often in a table setup, where participants’ motions are limited and
only upper-body of the participants are captured. Importantly, these datasets do no provide
accurate 3D motion capture measurements. There are datasets that capture free-standing con-
versational groups (e.g., cocktail party) [83–85, 156], but these databases also contain coarse
signal annotations only such as location and orientations of torso, targeting to study social
formation or category-level recognition tasks (e.g., speaker, personality, or role recognition).

Datasets providing accurate 3D body motion capture exist in computer vision and graph-
ics [157, 140, 158]. However, they often contain single subjects and do not include com-
municative behaviors. The motion capture data capturing casual social communication is
extremely rare.

1IRBSTUDY2015_00000478
2http://domedb.perception.cs.cmu.edu

http://domedb.perception.cs.cmu.edu
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Fig. 6.1 Before starting the social game capture, participants are instructed the game rules
and also spent time to be accustomed to the Panoptic Studio environment, as shown in these
photos. We follow a common and strict protocol during all captures to avoid any potential
bias.

Fig. 6.2 An example of the haggling sequence. (Left) an example scene showing two sellers
and one buyer. (Right) Reconstructed 3D social signals showing the 3D body, 3D face, and
3D hand motion. 3D normal direction from faces and bodies are also computed, and speaking
status of each individual, manually annotated, is also visualized here.
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Items Seller 1 Seller 2

Phone
Light weight

Medium storage
Medium weight
Large storage

Laptop
Light weight

Medium speed
Medium weight

Fast speed

Tablet PC
Large storage
Medium speed

Medium storage
Fast speed

Speaker
High quality audio

Wired
Medium quality audio

Wireless
Table 6.1 Examples of items assigned to sellers in our Haggling games.

6.2 The Haggling Game Protocol

To evoke natural interactions, we involved participants in a social game named the Haggling
game. We invent this game to simulate a haggling situation among two sellers and a buyer.
The triadic interaction is chosen to include interesting social behaviors such as turn taking and
attention changes, which are missing in previous dyadic interaction datasets [155]. During
the game, two sellers are promoting their own comparable products for selling, and a buyer
makes a decision about which product he/she buys between the two. The game lasts for a
minute, and the seller who has sold his/her product is awarded $5. To maximize the influence
of each seller’s behavior on the buyer’s decision-making, the items assigned to sellers are
similar products with slightly different properties. Example items are shown in Table 6.1.

For every capture, we follow the protocol described below. We randomly recruited partic-
ipants using CMU Participation Pool3. Over the 8 days of captures, 122 subjects participated
and 180 haggling sequences were captured (about 3 hours of data). The participants arrived
at the lab for the capture first sign on the IRB consent form with an agreement to publicly
release the data for research purposes only4 A unique identification number is assigned
to each participant, and participants are also equipped with a wireless microphone. Then,
all subjects are informed of the rules of the Haggling game by watching a pre-recorded
presentation video together. Notably, they are not instructed about how to behave during
the game, nor is their clothing or appearance controlled. All motions in the sequences are
spontaneous social behaviors based on the informed game rules. After introducing the game
rules, participants are asked to spend time inside the studio so that they can be accustomed to
the interior view of the Panoptic Studio. Before starting the capture, groups and roles are
randomly assigned, and participants line up based on their orders. We provide descriptions

3https://cbdr.cmu.edu/
4.

https://cbdr.cmu.edu/
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about the items written in small cards to sellers 1 minute before the game, and the sellers
return the card before entering the studio. With a starting signal, participants in a group
enter the studio and start the haggling game immediately. The positions and orientations
of the groups in the system are also spontaneously decided. During the capture, their all
social signals including voice, positions, orientations, and body motions are recorded. We
send a signal by ringing a bell 10 seconds before the end of the game, and send the same
alarm at the end of the game. After the capture, the buyer annotates the decision between
the two items in the prepared result sheet. The captured sequences contain a lot of voluntary
social behaviors of diverse people in a common social context. Example scenes are shown in
Figure 6.2 and 6.3.

6.3 Measured Social Signals in Our Corpus

We use our Panoptic Studio System to reconstruct 3D social signals (Chapters 2, 4, and 5. As
a key advantage, our method does not require attaching markers on the subject’s body, and
no behavior restrictions nor initialization poses are needed from the subjects. As output, the
system captures 3D body motion, 3D face motion, and 3D hand motion for each individual.
From these measurements, we additionally compute the body orientation and face orientation
by finding the 3D normal directions of torso and face. Finally, we fit our Adam model [48]
to reconstruct both body shape and joint angle parameters, which is the similar form as
in a motion capture system. Example visualizations of these social signal measurements
are shown in Figure 6.2, 6.4, and 6.5. The voice data of each individual is also recorded
by wireless microphones assigned to each individual. From the audio signal, we manually
annotate a binary speaking label describing whether the target subject is speaking (labeled as
1) or not speaking (labeled as 0).

6.4 Panoptic Studio Database

Our entire dataset contains various types of human motions in diverse scenarios, containing
more than 13 hours of sequences. Many researchers and artists in diverse fields including
computer science, business, psychology, and visual arts also exploit our system for various
applications. We publicly release various such sequences, including several other social
games described below. Categories and detailed information on our dataset are shown in the
Table 6.2.
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Fig. 6.3 Example scenes of haggling sequences with social signal measurements. For each
example, HD images overlaid by the projections of 3D anatomical keypoints (from bodies,
faces, and hands) are shown, along with a 3D view of the social signal measurements (top
right).
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Fig. 6.4 Visualizing part of social signals. (Left) Visualizing only face and speaking an-
notation where face mesh is reconstructed by the method described in Chapter 5, (Right)
Visualizing face mesh, body skeletons, and speaking annotation excluding social formation.
As a benefit of our measurement outputs, we can include (or exclude) specific channels of
social signals among all measured signals.

Ultimatum. Ultimatum is a bargaining game that was first experimentally studied by Güth
et al. [159] and has subsequently become among the most studied games in experimental
economics [160]. The game consists of two bargainers who are given a certain amount of
money to split ($10 in our experiment). One bargainer, referred to as the proposer, suggests a
split of the money, and the other bargainer, referred to as the responder, either accepts the
split (and both receive money accordingly) or rejects the split (and neither receive anything).
Unlike researchers in experimental economics and game theory, we are interested in evoking
interactions rather than predicting outcomes of the game, and we therefore make several
adjustments to the usual set up of the game. First, we organized participants into teams of
proposers and responders (e.g., two proposers and two responders, or four proposers and one
responder). Second, we introduced a one minute, face-to-face discussion phase where the
participants discuss what they should do (including both inter- and intra-team discussion).
One the discussion phase is over, the proposers suggested a split, which the responders
either accept or reject without discussion. Third, we did not control for prior acquaintance.
Before each experiment, the subjects were introduced to the game informally, with oral
instructions explaining the rules. The proposer(s) entered the eventspace first, followed by
the responder(s).

Mafia. Mafia is a game created by Dimitry Davidoff [161] that involves both conflict and
cooperation, and produces dynamically changing alliances and rivalries within a group of
people. Within the group, two individuals (usually) are secretly assigned the roles of “Mafia"
and the rest are assigned roles or ordinary Villagers. The goal of the Villagers is to determine
who among them is Mafia via discussion. It is a turn-based game that involves the Villagers
choosing to “execute" one player every turn—their best consensus guess at who the mafia
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Fig. 6.5 Example scenes of Haggling sequences with Adam model fitting results. Motions
from faces, bodies, and hands are captured in a mesh structure.
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players are—following by the Mafia secretly choosing to secretly “execute" a Villager of their
choice. The game is notable in that it requires some players to engage in outright deception,
and requires other players to try to infer this via the interaction alone. In our capture, we
involved eight players in the studio. One of them is determined as an operator, and two
Mafias and five Villagers are secretly assigned via selecting a lottery. During the game, we
gave them approximately a minute to discuss before iterating on each turn. A large number
of interesting phenomena were observed, including subtle motion and gestures to suspect or
deceive the other group. Participants were compensated $10 for their participation.

Categories Number of Sequences Total Duration Num. of people per scene
Haggling 22 232m 10s 3

Range of Motion 9 117m 1
Ultimatum 6 57m 20s 2-7

Mafia 7 83m 3-8
Dance 14 55m 5s 1-2

Musical Instruments 20 73m 1-3
Pose 33 120m 1

Toddler 12 26m 1-3
Hands 7 34m 1-3
Others 16 20m 3-15
Total 176 13h 37m 35s 1-15

Table 6.2 Statistic of Panoptic Studio Dataset
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Fig. 6.6 The Panoptic Studio Dataset website. We have collected a large number of sequences
in various situations. All the 521 sensor measurements as well as reconstructed 3D motion
capture results are available.



Chapter 7

Nonverbal Social Signal Prediction

Consider how humans communicate—we use language, voice, facial expressions, and body
gestures to convey our thoughts, emotions, and intentions. Such social signals that encode
the internal messages of an individual are then sensed, decoded, and finally interpreted
by communication partners (see Figure 7.1). One way to computationally model human
communication is by finding the mapping between the signals and the conveyed semantics, as
in affective computing field [162–164] to automatically recognize human emotions. However,
how to represent the internal status, either by discrete categories [141] or a set of latent
dimensions [142–144], is still controversial due to the fact that we have no way to directly
observe the internal status of our mind, and, more importantly, mapping the exposed signals
and the status is subjective to observers without an objective way to measure it [43].

In our research, we focus on the dynamics between social signals [165] that a subject
receives and sends, rather than the mapping between the social signals and their semantics.
The advantages of this approach are: (1) we can tackle the problem by investigating the
objectively measurable social signal data and (2) it enables us to model subtle details of social
communication by considering the original continuous and high-dimensional signal space.
By finding the patterns and correlations among social signals, we can computationally model
the dynamics of social communications, to ultimately teach a robot how to behave in a social
communication. Although similar ideas have been used to model human communication
skills in many different fields, including psychology (e.g., study on mimicry) [166], virtual
agents [167, 168], human-robot interaction [169], most of them are studied in a limited range
of nonverbal signals, often focusing on faces.

In this chapter, we aim to model the dynamics (or spatiotemporal correlations) among
social signals in a data-driven way. In particular, we take into account a broad spectrum
of social signals between individuals, including facial expressions, body gestures, body
proximity, and body orientations. While the correlations among a few types of signals of
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Fig. 7.1 Humans communicate by transmitting signals using several “display ports” such
as voice, body motion, and facial expressions. Such signals are then sensed, decoded, and
interpreted by others. We hypothesize that there exists a strong link between the signals
exchanged during the social interaction, and aim to computational model the dynamics of
them.

an individual have been already studied (e.g., between speech and facial expressions [170,
171], speech and gaze [172], speech and body [173, 174]), there is no existing work that
computationally studies the dynamics of various channels of social signals (e.g., both body
gestures and facial expressions) transmitted among individuals. The main obstacle in pursuing
the direction is the lack of available dataset or measurement technique. The sensing and
measuring techniques presented in this thesis based on the Panoptic Studio (Chapters 2, 3, 4,
5) allow us to enable this study for the first time, and we leverage the Haggling sequences
(described in Chapter 6) captured from hundreds of participants for this direction.

We first formulate a social signal prediction task to model the dynamics of social com-
munication as a function of input and output social signals (see Figure 7.2). In this task,
we consider a target individual who receives a set of social signals from others and emits
response signals as output. We hypothesize that the social behavior of the target person
can be learned by finding the patterns between these signal flows, by which machines know
how to behave given the signals humans produce. Importantly, we aim to include as many
channels of signals as possible to study the correlation between various channels of social
signals. However, directly investigating the dynamics of all spectrum social signals provided
by our measurement method is challenging due to the high complexity of the motion space,
requiring a much larger scale of data. We thus simplify the problem by focusing on predicting
lower dimensional, yet important, output signals—speaking status and social formations—
emitted by the target person, while still considering broader channels including body motion
and facial expressions as input. We found that this approach still provides an important
opportunity to computationally study various channels of interpersonal social signals. In
this chapter, we explore various issues in pursuing this research direction by discussing
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Fig. 7.2 We aim to learn the correlation between the input signals X an individual receives
and the output social signals Y the individual emits. The goal of social signal prediction is to
regress a function for these in a data-driven manner.

problem formulation, data representation, and evaluation metric. Results on our baseline
social signal prediction models, implemented by neural networks, demonstrate the strong
predictive property among social signals and also allow us to quantitatively compare the
relative influence among them. To this end, we further discuss the future research direction
to ultimately mimic the social behavior of humans.

7.1 Related Work

Psychology: Due to its importance in social communication, nonverbal cues have received
significant attention in psychology. Work in this area is often categorized into diverse sub-
fields including Proxemics, Kinesics, Vocalics, and Haptics. In our work, we focus only
on Proxemics and Kinesics, which are closely related to visual cues. Hall first introduced
the concept of Proxemics to describe how humans use their personal space during com-
munications [50], and Kendon studied the spatial formations and orientations established
when multiple people communicate in a common space (named F-formation) [51]. Facial
expression, in particular, has received lots of attention by researchers since the pioneering
work of Charles Darwin [175]. Ekman studied the relation between emotions and facial
expressions, and presented the Facial Action Code System (FACS) by introducing a system
to describe facial expressions using combinations of atomic units (Action Units) [42]. Since
then, this system remains as the de-facto standard to annotate and measure facial expres-
sions, and has had a broad impact across many fields. Compared to the face, body gestures
remain relatively unexplored even though research has substantiated the importance of body
language in communication [176, 1, 81, 82]. In spite of the efforts of many researchers in
diverse fields, little progress has been made in understanding nonverbal communications,
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and the approaches proposed several decades ago are still the most widely used methods
available [1].

Social Signal Processing: There has been increasing interest in studying nonverbal com-
munication using computational methods [177, 178]. Analyzing facial expression has been a
core focus in the vision community [179, 41, 180]. Many other methods to automatically
detect social cues from photos and videos have also been proposed, including F-formation
detection [181], recognizing proxemics from photos [182], detecting attention [183], rec-
ognizing emotions by body pose [184], and detecting social saliency [185]. The affective
computing field has been growing rapidly, where computer vision and other sensor mea-
surements are used with machine learning techniques to understand human emotion, social
behavior, and roles [162–164].

Forecasting human motion:
Predicting or forecasting human motion is an emerging area in computer vision and

machine learning. Researchers propose approaches for predicting a pedestrian’s future
trajectory [186] or forecasting human interaction in dyadic situations [187]. More recently,
deep neural network is used to predict future 3D poses from motion capture data [188–190],
but they focus on periodic motions such as walk cycles. Recent work attempts to forecast
human body motion in the 2D image domain [191, 192]. A few efforts address trajectory
prediction in social situations [193–195].

Measuring Nonverbal Signals in Imagery: Detecting human bodies and keypoints in
images has advanced greatly in computer vision. There exist publicly available 2D face
keypoint detectors [196], body pose detectors [104, 80, 105], and hand pose detectors [46].
3D motion can be obtained by markerless motion capture in a multiview setup [21, 30, 23,
53, 48], by RGB-D cameras [93, 27], or even by monocular cameras [197, 119, 198–201].
Recently, methods to capture both body and hands have also been introduced [137, 48].

7.2 Social Signal Prediction

The objective of Social Signal Prediction is to predict the behavioral cues of a target person
in a social situation by using the cues from communication partners as input. We hypothesize
that target person’s behavior is correlated to the behavioral cues of other individuals. For
example, the location and orientation of the target person should be strongly affected by the
position of conversational partners (known as Proxemics [50] and F-formation [51]), and
the gaze direction, body gestures, and facial expressions of the target person should also be
“conditioned" by the behaviors of the conversational partners. In the social signal prediction
task, we model this conditional distribution among interacting subjects, to ultimately teach a
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robot how to behave in a similar social situation driven by the behavior of communication
partners. There exist cases where the correlation of the social signals among subjects is
strong, such as hand-shaking or greeting (waving hands or bowing). But in most of the cases,
the correlation is implicit—there exist no specific rules on how to behave given other people’s
behavior, which makes it hard to manually define the rules. In our approach, we tackle this
problem in a data-driven manner, by automatically learning the conditional distributions
using a large scale multimodal social signals corpus.

We first conceptually formulate the social signal prediction problem here, and a specific
implementation focusing on the Haggling scenario is described in the next section. Let
us denote “all types of signals” that the target person received in a social situation at time
t as X(t). Thus X(t) includes the social signals from other individuals—body gestures,
facial expression, body position, voice tones, verbal languages—and also other contextual
factors such as the space where the conversation is performed or other visible objects which
may affect the behavior of the target person (e.g., some sounds or objects may attract the
attention of the person). We divide the input signal X(t) into two parts, the signals from the
conversational partners, Xc(t), and signals from other sources (e.g., objects, environment,
and other human subjects not interacting with the target person), Xe(t)1. Thus,

X(t) = {Xc(t),Xe(t)}. (7.1)

The Xc(t) may contain the social signals from multiple people and we denote the signals
from each subject separately:

Xc(t) = {Xi
c(t)}N

i=1, (7.2)

where Xi
c(t) are the signals from the i-th conversational partner in the social interaction and

N is the total number of partners. We also denote the signals emitted by the target person at
time t in the social situation as Y(t). Then, the goal of social signal prediction is to find a
function F which takes X as input and produces Y as output to mimic the behavior of the
target person in the social situation:

Y(t +1) = F (X(t0 : t),Y(t0 : t)) , (7.3)

where t0 : t represents a range of time from t0 to t affecting the current behavior of the target
person. Note that we define the function F to take the history of the target person’s own
signals Y(t0 : t), and the function predicts the immediate future motion (or response) of
the target individual. Intuitively, this formulation models the human behavior as a function

1Note that the Xe(t) can be ignored in our Panoptic Studio setup where the other factors (e.g., furniture) are
not presented.
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that represents the dynamics among social signals the target person receiving and emitting.
The function can be defined for a specific individual, representing the personal behavior of
the target person encoding characteristic, gender, and culture of the target. Based on that,
different individuals may behave differently. If the function is regressed by the data from
many people, then we hypothesize that the function produces more general and common
social behaviors, where the individual specific behaviors are averaged out.

Previous approaches can be considered as subsets of this model. For example, conversa-
tional agents (or chatbots) using natural language only can be represented as:

Yv(t +1) = F (Xv(t0 : t)) , (7.4)

where Yv and Xv represents only verbal signals. The human motion forecasting studied in
computer vision and graphics [189, 190] can be considered as:

Yn(t +1) = F (Yn(t0 : t)) , (7.5)

where Yn represents nonverbal body motion. Note that in this task, there is no social
interaction modeling, and the prediction is only for an individual using individual’s own
previous signals.

In our work, we focus on nonverbal social signal prediction in a triadic social interaction
in the Haggling game scenario:

Y(t0 : t) = F
(
X1

c(t0 : t),X2
c(t0 : t)

)
, (7.6)

where we predict the social signals of the target person given the signals of the two other
people during the same window of time. In particular, we consider diverse input and output
social signals to investigate their dynamics and correlations. The details of our approach are
described in the following section.

7.3 Social Signal Prediction in Haggling Scenario

We use our Haggling scenario as an example problem of social signal prediction to com-
putationally model triadic interaction. In this section, we specifically define the input and
output signals used in our modeling, and then present two social signal predicting problems,
predicting speaking status and predicting social formation, by describing their problem
definitions and implementation details. Note that we focus on estimating the target person’s
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Fig. 7.3 Social signal measurements used for social signal prediction. (Left) Reconstructed
3D social signals showing the body, face, global position, face orientation, body orientation,
and speaking status. (Right) The five face motion components (showing -0.3 on the top and
0.3 on the bottom) used in our social signal modeling.

concurrent signals by taking other individuals’ signals as input as defined in Equation 7.6 to
simplify the problem, rather than forecasting the future signals.

7.3.1 Notation

Our measurement method in the Panoptic Studio reconstructs 3D body motion B(t) and 3D
face motion F(t) for each individual at each time t2. We also denote the global position of the
body as X(t). From these measurements, we additionally compute the body orientation θθθ(t)
and face orientation φφφ(t) by finding the 3D normal direction of torso and face, respectively.
We describe the details below, and the left of Figure 7.3 shows an example visualization.

Body Motion: We follow the body motion representation of the work of Holden et al. [202],
representing a body gesture at a frame as a 73-dimensional vector, B(t) ∈ R73. This rep-
resentation is based on the skeletal structure of CMU Mocap dataset [157] with 21 joints
(63 dimensions), along with the projection of the root joint (the center of the hip joints) on
the floor plane (3 dimensions), the relative body locations and orientations represented by
the velocity values of the root (3 dimensions), and footstep signals (4 dimensions). The
orientations are computed only on the x-z plane with respect to the y-axis, and the location
and orientation represent the changes from the previous frame rather than the absolute val-
ues, following the previous work [190, 202]. In particular, the first 63 dimensions of B(t)
represents the body motion in the person-centric coordinate, where the root joint is at the

2We do not use the hand motion measurement due to the occasional failures in challenging hand motions
(e.g., when both hands are close to each other), making it hard to train our model. We, however, believe this cue
plays an important role in social interaction, which needs to be considered in future direction.
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origin and torso is facing the z direction. We perform a retargeting process to convert our
original 3D motion data from the Panoptic Studio, where the skeleton definition is the same
as COCO dataset [203] in the global coordinate, to this body motion representation with a
fixed body scale. Thus, in our final motion representation, individual specific cues such as
heights or lengths of limbs are removed and only motion cues are kept.

Face Motion: For the face motion signal, we use the initial 5 dimensions of the facial
expression parameters of Adam model (described in Chapter 5), because we found the
remaining dimensions have an almost negligible impact on our reconstruction quality. Note
that the face expression parameters in our Adam model (originally from the work of [103])
are sorted by their influence by construction and the initial components have more impact
in expressing facial motion. To this end, face motion at a time instance is represented by a
5-dimensional vector, F(t) ∈ R5, as shown in the right of Figure 7.3. Here, we also do not
include individual-specific information (the face shape parameters varying for individuals)
and only motion cues are kept.

Position and Orientation: For the global position x(t) of each individual, we use the
coordinate of the root joint of the body, ignoring the values in y axis, and thus x(t) ∈ R2.
We use a 2D unit vector to represent body orientations θθθ(t) ∈ R2 and face orientation
φφφ(t) ∈ R2, defined on the x-z plane ignoring the values in y axis. Note that we use unit
vectors rather than angle representation, because the angle representation has a discontinuity
issue when wrapping around 2φ and −2φ . In contrast to the relative location and orientation
represented in the part of body motion B(t), these x(t), θθθ(t), and φφφ(t) represent the values
in the global coordinate, which are used to model social formation. In summary, the status
of an individual at a frame in social formation prediction is represented by a 6-dimensional
vector, [x(t)⊤,θθθ(t)⊤,φφφ(t)⊤]⊤ ∈ R6.

Speaking Status: The voice data V(t) of each individual is also recorded by wireless
microphones assigned to each individual. From the audio signal, we manually annotate a
binary speaking label S(t)∈ {0,1} describing whether the target subject is speaking (labelled
as 1) or not speaking (labelled as 0) at time t.

By leveraging these various behavioral cues measured in the Haggling scenes, we model
the dynamics of these signals in a triadic interaction. The objective of our direction is to
regress the function defined in Equation 7.6. To further constrain the problem we assume
that the target person is the seller positioned on the left side of the buyer, and as input we
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use the social signals of the buyer (X1) and the other seller (X2). Based on our social signal
measurements, the input and output of the function are represented as,

Y = [x0,θθθ 0,φφφ 0,B0,F0,S0],

X1 = [x1,θθθ 1,φφφ 1,B1,F1,S1],

X2 = [x2,θθθ 2,φφφ 2,B2,F2,S2],

(7.7)

where we use the superscript 0 to denote the social signals of the target subject (the output of
social signal prediction).

7.3.2 Predicting Speaking

We predict whether the target subject is currently speaking or not, denoted by S0. This is a
binary classification task and can be reliably trained by Cross Entropy loss function. We first
study the correlation between the speaking signal of the target person, S0, and the person’s
own social signals, either body motion B0 or facial motion F0, or both. We expect this
correlation is stronger than the link across individuals. Formally, a function FB0→S0 takes
the target person’s own body motion B0(t0 : t) to predict the speaking signal:

S0(t0 : t) = FB0→S0
(
B0(t0 : t)

)
, (7.8)

and similarly,

S0(t0 : t) = FF0→S0
(
F0(t0 : t)

)
, (7.9)

S0(t0 : t) = F(F0,B0)→S0
(
F0(t0 : t),B0(t0 : t)

)
, (7.10)

where FF0→S0 takes the target person’s own face motion, and F(F0,B0)→S0 takes both face
and body cues.

We compare the performance of these functions with the functions that takes the signals
from a communication partner, the other seller:

S0(t0 : t) = FB2→S0
(
B2(t0 : t)

)
, (7.11)

S0(t0 : t) = FF2→S0
(
F2(t0 : t)

)
, (7.12)

S0(t0 : t) = F(F2,B2)→S0
(
F2(t0 : t),B2(t0 : t)

)
, (7.13)

where the functions use body cues, face cues, and both cues, respectively.
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Fig. 7.4 Network Architectures. We use fully convolutional networks for both predicting
speaking status and social formation problems. The models can be applied to the input of
arbitrary length, but we use the input data of a fixed size f = 120 for the efficiency in training.

This framework enables us to quantitatively investigate the link among social signals
across individuals. For example, we may easily hypothesize that there exists a strong
correlation between the signals from the same individual (e.g., speaking and facial motion
of the target person), while the correlation between the signals across different individuals
(e.g., speaking of the target person and body motion of another person) may be considered as
weak. By comparing their performances, we verify there still exists strong links among these
signals exchanged across subjects.

Implementation Details. Our neural network is composed of four 1-D convolutional
layers, as shown in the top of the Figure 7.4. The first three layers output 128, 256, and 512
dimensional features respectively with ReLU activation functions, and the last layer has 1×1
convolutions with a sigmoid activation layer. Dropout [204] is also applied for the second
and third layers with a retention probability of 0.25. Our model does not require a fixed
window size for the input (since it is fully convolutional), but we separate input data into
small clips with a fixed size (denoted by f ) for the efficiency in training. During testing time,
our models can be applied to the input of arbitrary length. We use f = 120 (4 seconds) for
the input window size for training, and we use an arbitrary length of input data for testing.
The feature dimension of the input of our network is the concatenation of face motion and
body motion (78 dimensions). If fewer cues are used (e.g., face only or body only), we mask
out the unused channels as their average values computed in training set by keeping the same
network structure. We use an adaptive gradient descent algorithm, AmsGrad algorithm [205],
implemented in PyTorch [206], along with the l1 regularization loss with the weight of 0.001.
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7.3.3 Predicting Social Formations

We predict the location and orientations of the target person, denoted by Yp = [x0⊤,θθθ 0⊤,φφφ 0⊤]⊤,
given the same channels of cues from the communication partners. This problem is strongly
related to Proxemics [50] and F-formation [51], illustrating how humans use their space in
social communications. Formally,

Yp(t0 : t) = Fp
(
X1

p(t0 : t),X2
p(t0 : t)

)
, (7.14)

where Yp, X1
p, and X2

p contain global location and orientation signals [xi⊤,θθθ i⊤,φφφ i⊤]⊤ (where
i = 0,1, or 2) for the target subject and others. Note that we only consider the positions
and orientations on the ground plane (in 2D), ignoring the height of the subjects, and thus
Yp(t),Xi

p(t) ∈ R6. This prediction problem is intended to see whether the machine can learn
how to build a social formation to interact with humans [207].

Implementation Details. Our neural network has an autoencoder structure, where the
encoder is composed of two 1-D convolutional layers followed by a max pooling layer with
stride 2, and the decoder is composed of a single 1-D transposed convolution layer. The
network is shown in the bottom of the Figure 7.4. The output feature dimensions are 64,
128, and 6 respectively. Dropout [204] is also applied in front of all layers with a retention
probability of 0.25. Similar to the speaking status prediction, our model does not require a
fixed window size for the input, but we separate input data into small clips with a fixed size
( f = 120, or 4 seconds) for the efficiency in training. The input is the concatenation of the
cues of other two communication partners (12 dimensions) with a fixed order (buyer and
then the right seller), and the output of our network is the position and orientations of the
target individual, the left seller (6 dimensions). Similar to the previous prediction task, if
fewer cues are used (e.g., position only), we mask out the unused channels as their average
values computed in training set by keeping the same network structure. We use an adaptive
gradient descent algorithm, AmsGrad algorithm [205], implemented in PyTorch [206], along
with the l1 regularization loss with the weight of 0.1.

7.4 Results

In this section, we show experimental results for two prediction tasks, predicting speaking
status and social formations, from different input sources. The core direction in performing
this experiments is to explore the correlations of diverse behavioral channels measured in
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genuine social communications. We leverage the availability of a broad spectrum of social
signal measurements of the Haggling dataset (described in Chapter 6).

7.4.1 Pre-processing Haggling Data

Given the measurement data of the Haggling games, we first manually annotate the start and
end time of the game, where the start time is decided when the social formation is built and
the end time is defined when the social formation is broken. We crop out the motion dataset
based on this start and end time, so that we ignore the time while subjects enter and exit
the capture space. For each haggling game scene, we also annotate the players’ roles in the
game, buyer, left-seller, and right-seller, where the left and right are determined in the buyer’s
viewpoint. In our experiment, we specify that the left seller is our target person and predict
the social behavior of these subjects. As described in our method section, we re-target the
motion data to a standardized skeleton size to remove size variation from the body skeletons
similar to [202]. We also synthesize footstep signals and decouple the body motion from
global translation and orientation using the method of [202]. For face motion, we fit the face
part of our Adam model (described in Chapter 5) on the 3D keypoints of individual’s face,
and use the first five facial expression parameters, as described in Section 7.3.1. Finally, we
divide the dataset into 140 training sets and 40 test sets. However, since there exist sequences
where the reconstruction errors are severe for some frames, we select only 79 training sets
and 28 testing sets which are manually verified to be error free. We additionally divide all
training set into slices with 120 frames to train our models. We standardize all input data so
that they have zero mean and unit variance.

7.4.2 Speaking Status Prediction

We predict whether the target person is currently speaking or not by observing other channels
of social signals in the scene.

A result on intra-personal signals. First, we investigate the performance when the target
individual’s own social signals are used as input. Three different input sources—facial
expressions, body gestures, and both of them—are used to train neural network models
respectively. In particular, we use the same neural network architecture for this experiment
by keeping the input dimension and network size as the same to make the comparison as
fair as possible. As described in the Section 7.3.2, to train each network we mask out the
unused channels in the input as their average values computed in the training set. The
prediction accuracies from these input signals are shown in the first column of Table 7.1.



7.4 Results 121

Input Signal Types/Sources Self signal Other seller’s signal Random person’s signal
Face+Body 89.13% 77.97% 49.65%

Face 89.16% 80.21% 49.64%
Body 76.69% 71.29% 50.22%

Table 7.1 Speaking status classification accuracy using different social signal sources as input

Input Signal Types/Sources Self signal Other seller’s signal
Face+Body (original) 89.13% 77.97%
After Removing Body 85.11% 75.26 %
After Removing Face 54.33% 67.64 %

Table 7.2 An ablation study after removing certain channels in the input for the networks
trained with Face+Body input. The first row is the output of the original network (the same
as in Table 7.1), and next rows are testing performance after masking out body or face parts
in the input data without any retraining.

As demonstrated in our result, the social signals from the target individual show strong
correlations with the speaking. For example, the facial cue of the target person shows the
strongest correlation (about 90% accuracy) with the target person’s own speaking status,
presumably due to the strong correlation between the lip motion and speaking. The body
motion also shows a strong correlation with more than 76% prediction accuracy. The result
with both body and face signals, shown in the first column of Table 7.1, is similar to the case
that only face cue is used, and by applying an ablation study we found that this is because
the network dominantly uses the face cues over the body cues for the prediction, as shown in
the first column of Table 7.2. More specifically about this ablation study, given the trained
model which takes both face and body as input, we mask out the face part or body part in
the input data during the “testing” time and compute their performances. As shown in the
Table 7.2, the accuracy after removing the body part is similar to the original performance,
meaning that the trained network is less dependent to the body cues, while there exists much
larger drop if the face part is removed.

A result on inter-personal signals. A more interesting experiment is investigating the
performance by using the other seller’s social signals as input to predict the target person’s
speaking status. Similarly, three different input sources are considered, and the results are
shown in the second column of the Table 7.1. The result clearly shows that there exists a
strong link between interpersonal social signals. The other seller’s facial motion shows a
strong predictive power for the target person’s speaking status, where the accuracy is higher
than the case of using the target person’s own body signals as input, presumably due to the
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Fig. 7.5 Comparison between the performance of speaking status prediction and turn-taking
status for each sequence. Each column shows the prediction performance (yellow bar) where
the other seller’s face and body signals are used as input. The blue curve represents how well
the turn-taking rule is satisfied, which is defined by counting the percentage of the timing
where at most one person is speaking.

turn-taking property in social communication. For example, we can assume that the target
person is not speaking, when the other seller is speaking. We can further investigate this
by checking how well the turn-taking rule is satisfied during each social game scene, along
with its predicting performance. As a way to measure the turn-taking status, we consider the
percentage of the timing at which at most one person speaks, which defined by:

∑
t

δ
(
S0(t)+S1(t)< 2

)

T
, (7.15)

where T is the total time of a Haggling game, S is the speaking status for sellers, and δ is a
function that returns 1 if the condition satisfies and returns 0 otherwise. In this measurement,
100% means that there is no time that both sellers are speaking at the same time, where
the turn-taking rules are perfectly satisfied. We compute this measurement to check the
turn-taking status for each testing sequence as the blue curve in Figure 7.5. In this figure,
we also plot the speaking prediction accuracy for each testing sequence by using the other
seller’s both face and body signals as input, which is shown as yellow bars. As shown in
the figure, the prediction performance shows a very similar pattern to this turn-taking status,
and this means that this implicit social “rule” is a source of linking the social signals across
individuals. Example qualitative results are shown in the Figure 7.7.
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Fig. 7.6 The result of an ablation study by comparing the prediction performances after
removing each channel of the social signal input using the trained networks. We use the
networks trained by using both body and face cues as input (the first row of the Table 7.1),
and the performance drops after removing each part, compared to the original performances,
are shown by colors and circle sizes. The left figure is the result by using the target person’s
own signals, and the right figure is by using the other seller’s signals. The colorbar on the
right shows the frame drops in percentage from the original performances.

A result on random signals. As a comparison, we also perform an experiment by using
social signals from a random individual, where the individual is randomly selected in the
testing set without any social link to our target individual. As shown in the third column of
the Table 7.2, the classification performance using a random person’s motion as input shows
about the chance level (50%) with no predictive property.

An ablation study to verify the influence of each part. As another test, we perform an
ablation study by comparing the prediction performance after removing every single channel
in the trained network. For this test, we use the network trained with both body and face
cues (the first row of the Table 7.1). We mask out a certain channel (e.g., a face motion
component or a body joint part) in the input during testing time and check the performance
drop from the original output. The result is shown in Figure 7.6, where the colors and the
sizes of the circles represent the amount of performance decrease. This result shows that the
first component of the face motion, which is corresponding to the mouth opening motion
as shown in Figure 7.3, has the strongest predictive power for speaking status. As another
interesting result, the result shows that the right hand has stronger predictive power than the
left hand.
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Fig. 7.7 Qualitative results of the speaking prediction of the target person (red) by using the
other seller’s (yellow) face and body motions as input. The speaking prediction output is
shown as the blue “speaking" label above the target person’s head, while the ground truth
speaking status is shown as the red label. The prediction is accurate, if both blue and red
labels are shown, or not shown. Examples scenes of two haggling games (top and bottom)
are shown, where the sequence on the top has high accuracy (89%) and the sequence on the
bottom has low accuracy (58%). In the haggling game shown on the top, both sellers follow
the turn-taking rule almost always, while in the sequence shown on the bottom both sellers
frequently speak at the same time.

7.4.3 Social Formation Prediction (Position and Orientation)

We predict the position and orientation of the target person, the “left seller", by using the
signals of communication partners. In this test, we explore the prediction accuracy by
considering combinations of difference sources: using body position, body orientation, and
face orientations. Table 7.3 shows the results. By using all signals, we obtain the best
performance. Intuitively, we can imagine that the target person’s location can be estimated by
triangulating the face normal direction of the other two subjects, which presumably learned
from our network. The prediction performance using only position cues shows the worst,
but still a reasonable, performance among them. Example qualitative results are shown in
Figure 7.8.

We also introduce a baseline. The baseline method (denoted as “Mirroring" in Table 7.3)
predicts the location of the target seller to mirror that of the other seller w.r.t the buyer’s body
orientation, and estimate body orientation as the average between the two input subjects. The
face orientation is chosen to always face the buyer. This baseline has large errors, with poor
prediction results when the buyer is directly facing the other sellers, making the target person
be too close to the other seller.
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Types Position Body Orientation Face Orientation
PosOnly 29.83 (13.38) 0.26 (0.12) 0.33 (0.13)
Pos+face 25.23 (9.74) 0.23 (0.09) 0.30 (0.12)
Pos+body 26.57 (10.24) 0.22 (0.08) 0.30 (0.10)

Pose+face+body 24.59 (10.23) 0.21 (0.06) 0.29 (0.09)
Mirroring (baseline) 50.03 (20.84) 0.40 (0.17) 0.52 (0.14)

Table 7.3 Social Formation Prediction Errors (cm). Average position error between our
estimation and ground-truth are reported in centimeters. The body orientation and face
orientation are computed between the distance of estimated facial/body normal direction and
GTs.

Fig. 7.8 Qualitative results of the social formation prediction of a haggling game, visualized
from the view at the top. The target person is shown as red spheres. The cues from other
people (yellow and cyan spheres) are used as input for the prediction, and the prediction
output is shown as the blue cube. The red lines represent body orientations, and the green
lines represent face orientations.

7.4.4 Revisiting Proxemics

Our dataset has the measurement of fully spontaneous motions (including the position
and orientation of groups) of interacting people, and enables us to revisit the well-known
proxemics theory [50]. We first compute the average distance between a pair of subjects: (1)
buyer and right sellers (B-RS), (2) buyer and left seller (B-LS), and (3) left seller and right
seller (LS-RS). The results are shown in Table 7.4. We found that the result approximately
follows the social distance categories defined in the Hall’s categorization [50]. The distances
among sellers are within the close phase of social distance ranges (from 120 cm to 210 cm)
and the average distance among sellers and buyers are within the far phase of social distance
(from 210 cm to 370 cm) in [50]. To analyze the shape of the social formation, we plot the
average formation of games in a person-centric coordinate by a buyer. The results are shown
in the Figure 7.9, showing that the formation is often similar to isosceles triangles with
relatively far distances between a buyer and two sellers than the distance between sellers.
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Fig. 7.9 Visualizing social formations in the haggling sequences as triangles (left) and a heat
map (right). The formation is normalized w.r.t the buyer’s location, and the green circle on
the right shows the buyer location (origin) and orientation (z-axis).

Avg. dist. Std. Min Max
B-RS 148.11 27.26 99.03 265.52
B-LS 151.45 29.62 104.24 284.85

LS-RS 124.13 24.05 77.70 206.26
Table 7.4 Average distances (cm) between subjects. B, RS, and LS denote buyer, right seller,
and left seller respectively.

7.4.5 Verifying The Bias of Buyer’s Body Orientation Toward Winner

As output of haggling games, the decisions of buyers are known, making winners and losers
between two sellers. Equipped with the body location and orientation measurements of all
individuals, we can quantitatively verify whether there exists any bias in the body orientations
of buyers toward winners. To check this, we first normalize the orientation cues of the buyers
with respect to both sellers as shown on the right of the Figure 7.10, where the orientation of
a buyer with respect to two sellers is represented by a value around 0.0 and 1.0 at a time. In
this representation, 0.0 means that the buyer’s body is fully facing the winner, and 1.0 means
that buyer’s body orientation is fully facing the loser. We plot a histogram of the buyers’
body orientations in this normalized orientation space from entire haggling sequences, which
is shown on the left of the Figure 7.10. This result shows that the most frequent orientation
direction (around 0.41) is less than 0.5 (facing the exact center between two sellers), meaning
that buyers’ body orientations are slightly biased toward the winners’ location. This is an
interesting discovery, enabled by the measurement our system produces.
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Fig. 7.10 We can quantitatively verify whether there exists any bias in the body orientations
of buyers toward winners. A histogram of the buyers’ body orientation in a normalized
orientation space is shown on the left by using entire haggling sequences. In this normalized
orientation space, 0.0 means that the buyer’s body is fully facing the winner, and 1.0 means
that buyer’s body orientation is fully facing the loser (as shown on the right figure).
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7.5 Discussion

We present a data-driven social signal prediction framework, which allows us to investigate
the dynamics and correlations among interpersonal social signals. We formalize the social
signal prediction framework, and describe subtasks with various channels of input and output
social signals. To build the models, we leverage our Haggling dataset collected from hundreds
of participants by using the sensing and measurement techniques presented in this thesis. In
particular, the various channels of nonverbal social signals in the Haggling dataset provide
a crucial opportunity to computationally study their dynamics. We demonstrate a clear
evidence that the social signals emerging in genuine interactions are predictive each other, by
studying two prediction problems, predicting speaking and predicting social formations.

We believe the approach described in this chapter is an important direction to endow
machines with the nonverbal communication ability. There are still unexplored issues, and
two important questions are discussed in this section.

7.5.1 Predicting More Complicated Signals

We may tackle predicting more complicated social signals using the social signal prediction
framework presented in this chapter. For example, we predict body gestures of the target
individual by using communication partners’ body signals as input:

B0(t0 : t) = F(B1,B2)→B0
(
B1(t0 : t),B2(t0 : t)

)
. (7.16)

We have tested this approach by implementing a neural network. For the implementation,
we follow the work of [202] to first learn a human motion manifold space, and then build
another neural network to find the mapping between the input signals (body motions from
other individuals) and the output body motion (the target individual’s body motion). We
found that this approach produces a certain level of human-like body motions with dynamic
movements on legs and upper bodies, but it was not sufficient to verify a strong correlation
across interacting individuals. Two core reasons can be considered about the limited perfor-
mance: (1) the metric used for training models as loss function and also for the evaluation
metric, the Euclidean (or L2) distance, may not be ideal to effectively extract the subtle
correlations among high dimensional social signals, and (2) the quantity of our dataset is not
sufficient to model the correlation among high dimensional signal spaces. We further discuss
these issues in the following subsections.
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Types Avg. Joint Errors (cm) Std.
Mean Pose 7.83 2.33

Prediction by our method 8.72 2.00
Table 7.5 Social Body Gesture Prediction Errors (cm). The error is computed by averaging
L2 distance of all joints using the Ground Truth body motion.

7.5.2 Evaluating Social Signal Prediction

The output of social signal prediction should satisfy the following two requirements: (1)
the predicted signals should be within a feasible human motion space showing realistic
human motions, and (2) the predicted signals should follow the social rules, responding
to the behaviors of communication partners. However, it is challenging to evaluate these
requirements, because there is no objective metric to quantify “realistic” or “social” properties
in behaviors. Notably, the L2 distance between the predicted signals and ground-truth may
not be a good metric because it does not consider such properties. For example, although
several human behaviors can be still acceptable given the same input in our social signal
prediction task, this metric penalizes them if they are different from the single ground-truth
motion, regardless their quality. Due to the reason, the L2 metric often favors the output close
to the mean of the data distribution, although it is qualitatively far from the expected output.
The similar issue has been discussed in human motion forecasting field [188–190, 208]. In
body gesture prediction trial described above subsection, we found a similar issue as shown
in the Table 7.5, where the mean pose of the training set outperforms our prediction result,
although the mean pose is is far from the realistic motion with only a static posture, while
our result shows more human-like motion with reasonable dynamics.

7.5.3 Modeling More Diverse Social Interaction

In this chapter, we demonstrate social signal modeling in a triadic scene, focusing on the
Haggling scenario we defined. As an important future direction, more general social scenarios
(e.g., polyadic interaction among an arbitrary number of individuals) needs to be considered.
This direction requires a way to build a larger social interaction database in more diverse
social scenarios, which may not be handled by our studio setup. The video sequences
capturing daily social interactions, millions of which are already available on the Internet,
can be an important source for this direction, although obtaining 3D signals from these
in-the-wild monocular videos is a challenging problem. In our recent work, we show a
promising result in this direction by presenting a monocular total capture method [49]. How
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to model social interaction among an arbitrary number of communication partners is another
issue, since our current approach assumes a fixed number of communication partners.



Chapter 8

Discussion

8.1 Summary

The ultimate objective of this thesis is to endow robots with nonverbal communication skills,
to make them genuinely interact with humans. This thesis argues that a solution to achieve the
goal is by exploiting computational methods and machine learning techniques, leveraging a
large-data data containing the social signals that humans use in actual social communications.
This thesis directly tackles the fundamental hurdle, the lack of available such dataset, by
building the Panoptic Studio, one of the most complicated sensor systems to sense human
motions (Chapter 2). Leveraging the sensor system, this thesis presents the state-of-the-art
measurement method to capture a broad spectrum of social signals of interacting individuals,
including the motions from faces, bodies, and hands (Chapters 3, 4, and 5). Our system and
reconstruction method enable us to build a large-scale 3D motion capture corpus capturing
various behavioral cues of interacting people, for the first time in the history (Chapter 6).
The final part of this thesis computationally verifies that social signals are highly correlated
and predictive each other, and introduces a social signal prediction task as a way to modeling
nonverbal communication in a data-driven manner (Chapter 7).

This thesis demonstrates that the face, body, and hands motion of freely interacting groups
can be markerlessly captured with a sufficient amount of sensors by applying ML-based
measurement techniques for each view and consolidating them together. This is a crucial
step showing the potential that the markerless motion capture approaches can outperform the
popular marker-based motion capture method in the near future, which struggles in handling
occlusions causing broken trajectories.

As another important contribution, this thesis also demonstrates that the data captured in
the lab environment can be used as a valuable source for the computer vision and machine
learning algorithms applied in-the-wild. For example, our system enables to build the first
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Fig. 8.1 As an important contribution, this thesis enables to measure much higher dimen-
sional social signals exchanged in genuine social interaction compared to the existing work.
Collecting higher fidelity and more quantity of data is interesting future directions.

widely used 2D hand keypoint detector [46]. Our system also enables us to build the first 3D
deformable human model with the expressive power for face, body, and hands. Our dataset
containing paired 3D motion annotation for each RGB image also allows us to build the first
monocular total capture system [49].

8.2 Future Work

This thesis takes the first step toward the ambitious goal of building “social Artificial Intelli-
gence”. As an important contribution, this thesis enables to measure much higher dimensional
social signals exchanged in genuine social interaction compared to the existing work (as
illustrated in Figure 8.1), and demonstrates how to use the data to computationally model
nonverbal communication. We believe that there will be immense opportunities in future
direction by extending the direction this thesis presents. Three key future directions are
summarized below.

Measuring Higher Fidelity Social Signals. Although this thesis presents the state-of-
the-art sensing and reconstruction techniques to measure social signals, the quality of the
output is still not close to the level of human perception. For example, eye gaze, which
plays an important role in social communication [209–211], and subtle details in the facial
expressions, hairs, and clothing are missing. These are mainly caused by limited camera
resolution of the system where the cameras are focusing the large working volumes. In
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particular, the cameras were chosen several years ago and already outdated. Although it
is known that high-resolution images are extremely beneficial to reconstruct high-fidelity
social signals [11, 13], using many high-resolution (e.g., 4K) and high-speed cameras to
cover the large working volume directly introduces additional difficulties in handling and
processing the larger data size. Current hand reconstruction is also vulnerable if both hands
are overlapped each other, since the hand detector assumes that only a single hand is visible
in a predicted bounding box. Tackling these issues is interesting future directions with many
application domains, including robotics, HCI, virtual reality, and medical applications.

Measuring 3D Social Signals In-the-Wild. The Internet is a golden trove of social com-
munication data, and these data should be utilized to model more general nonverbal com-
munications. However, obtaining 3D signals from these in-the-wild monocular videos is a
challenging problem requiring to solve the ill-posed depth ambiguity. This research may
require 3D annotations for each 2D image, which cannot be reliably annotated by human
annotators. We already show a promising result in this direction by presenting a monocular
total capture method [49] leveraging our Panoptic Studio database providing paired 3D
skeleton annotations for images. However, this is yet only applicable to the scenes with a
single person only. Capturing social signals of more complicated scenes with multiple people
with better quality should be considered as a future direction to collect social signal data at
scale.

Modeling Long-term Social Behavior in A Living Environment. This thesis only con-
siders a short-term behavior by collecting database in a short social game scenario. However,
interpersonal social behaviors may change over time (e.g., our behavior would be changing
if we see the same person for a long time). As a future work, a long-term social behavior
analysis should be also considered. This requires to capture the behaviors of the same person
for a long time, and as a way, a similar multiview setup as in our Panoptic Studio needs
to be installed in a living environment where humans are actually living (e.g., A camera
system in a home environment). By computationally analyzing an individual’s behavior in
social situations for a long-term, a subject-specific model which predicts the future signals
of the particular person can be trained, which can be an important property in building
robots co-existing to our environment (e.g., robotic pets). As human reactions responding
to the same input signals vary across people, the individual-specific prediction model can
produce a distinctive output reflecting the target individual’s characteristics, attending to
each individual’s unique needs and goals. There are many novel scientific questions we can
consider from the measurements in this new scenario including: (1) Does social familiarity
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influence interpersonal social behaviors; (2) How does scene affordance (e.g., furniture or
TV) affect social behaviors (e.g., social formation); (3) Can long-term observations of the
same person increase the social signal prediction accuracy of the particular person.
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