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Abstract

Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been
devel oped and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch.
In the characterization of food quality, people assess the samples sensorially and differentiate “ good” from “bad” on a continuum.
However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial
senses such as machine vision, the electronic ear, €l ectronic nose, electronic tongue, artificial mouth and even artificial the head
have been devel oped that mimic the human senses. These artificial senses are coordinated individuadly or collectively by a pat-
tern recognition technique, typically artificial neural networks, which have been devel oped based on studies of the mechanism of
the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research
presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems
can work collectively in some way. Two such fused systems, artificial mouth and artificia head, are described and discussed. It
indicates that each of the individua systems has their own artificially sensing ability to differentiate food samples. It further
indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual sys-
temsin differentiation of food samples.
Keywords: food quality, artificial senses, quality quantification, artificial neural networks, festure extraction, multi-sensor data

fusion

1 Introduction

Therearefive primary senses: vision, hearing, smell,
taste and touch. They are the functions of eyes, ears, nose,
tongue and skin respectively. These functions are coor-
dinated by the brain. In the characterization of foods
people sense the samples and differentiate “good” from
“bad” along a continuum. However, the human sensory
system is | subjective, with mental and physical incon-
sistencies, and time consuming. Artificial senses such as
machine vision, the e ectronic ear, € ectronic nose, eec-
tronic tongue, artificial mouth and even the artificial head
have been devel oped which mimic human senses. These
artificial senses are coordinated individually or collec-
tively by a pattern recognition technique, typically arti-
ficial neural networks, which were constructed based on
studies of the human brain. Such a structure is used to
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devel op methods for the rapid characterization of foods.
These methods are objective, computerized and typically
non intrusive and non invasive.

Food quality is very important in product processing
and consumption since it is an index which measures the
competitiveness of products in the market. The key for
artificial senses to characterize and to evaluate food
quality is to quantify the quality of foods. The quality of
foodsis of primary concern both to the food industry and
to the consumers. Consumers need quality foods to be
tasteful, nutritious, and safe. Therefore, eval uation of the
quality of foods is highly important to food manufactur-
ers, distributors, sellers, and consumers.

In general there are two types of methods for
evaluation of food quality. Subjective methods are based
on the human assessment of the qualitative and quanti-
tative values of the characteristics of the food. These
methods usually involve perception of texture, flavor,
odor, color, and touch. However, even though human
evaluators are highly trained, their opinions vary because
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of mental and physical variability.

With computer and e ectronic technol ogies, fast and
consistent signal measurement, data collection, and in-
formation processing and analysis become possible.
Computerized food quality evaluation systems can con-
sistently perceive deviation from standards. Such com-
puterized systems can be built to mimic human senses
but with none of the mental and physical problems of
human evaluators. A digital camera can be connected to a
computer equi pped with image processing software to set
up a machine vision system. An acoustic sensor can
function as an electronic ear. An array of gas sensors
combined with pattern recognition al gorithms comprises
an dectronic nose. An array of electrochemical eec-
trodes combined with pattern recognition algorithms can
be an electronic tongue. These systems can function
individually or in combination by multi-sensor data fu-
sion which improve individual performance. By com-
bining information from auditory, tactile and olfactory
senses an artificial mouth can be built "*? . An artificial
head is feasible if al five human senses are mimicked
and combined"®’. Thisreview will present and discussthe
principles, structures, and applications of individual ar-
tificial sensing systems. With the concept of multi-sensor
data fusion these sensor systems can work collectively to
construct more powerful artificial sensing systems. Two
such systems, the artificial mouth and the artificial head,
will be described and discussed.

2 Basic methods

2.1 Food quality quantization

Food quality quantification is fundamental to arti-
ficial evaluation. It allows the relationships to be repre-
sented mathematically. With the procedure or the
mathematical relationship the evaluation of food quality
can be automated according to the logic of artificial
senses. The concept is to mimic human senses with arti-
ficial senses which can “see’, “listen”, “smell”, “taste”,
“touch”, and even “eat” the food and then differentiate
the samples, typically with artificiad neural networks
often guided by results from a human sensory pand.
Performance is usually measured by comparison of the
guantitative data with sensory, classification assignment,
and/or mechanical and chemical attributes . In general,

the procedure is as follows (Fig.1)
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Fig.1 Diagram of the procedurefor food
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(1) Sampling procedure is designed to produce
enough data for a conclusion to be drawn with adequate
statistical significance. When the food samples are ex-
tracted, they usually need to be further processed, stored,
and delivered to the experimental station for measure-
ment.

(2) Sensors and transducers measure physical
properties of the food samples. The data are conditioned,
converted, and stored for processing and analysis.

(3) The data are processed, usually scaled or nor-
malized, to produce a consistent magnitude amongst the
variables. The relationships between variables are tested
and the correlations between variables are determined.
This step helps make decisions on modeling strategy.

(4) Empirical mathematical models are statistically
built to produce quantitative relations between input(s)
(physical properties) and output(s) (human sensory
guantities, classification assignments, and/or mechanical
and chemical measurements of the samples). A number
of methods are available for building the models, such as
discriminant analysis, Bayesian decision, statistical re-
gression, etc.. Artificial neural networks provide away of
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organizing synthetic neurons to solve complex problems
in a manner similar to the human brain. They are effec-
tive in capturing complex relationships between inputs
and outputs in artificial sense-based food quality quanti-
fication ' .

(5) The food samples can be classified for their
sensory, mechanical, and chemical attributes. The accu-
racy of the quantification is calculated to measure per-
formance ™. If the performance is good, the quantifica-
tion scheme can be used in quality eval uation; otherwise,
it may be necessary to reassess modeling, data processing
and analysis, data acquisition, and/or the sampling pro-
cedure to decide where to refine the scheme.

2.2 Artificial neural networks

Neural networks have been used to solve complex
problems such as pattern recognition, fast information
processing and adaptation. The architecture of an artifi-
cial neura network (ANN) isa simplified version of the
structure of the human brain. For problem solving, the
human brain uses a web of interconnected processing
units called neurons to process information. The vast
processing power of biological neural structures has
inspired their study as a model for man made computing
structures. Pioneer studies ™! were conducted on the
theory of artificial neural networks. In 1986, the Parallel
Distributed Processing (PDP) group published results
and algorithms 2 *¥ about back propagation training of

Input Hidden Hidden
layer layer layer
Input
Input
Input

multilayer feed forward networks. This work gave a
strong impetus to the area and provided the catalyst for
much of the subsequent research and application of arti-
ficial neural networks.

A neura network is typically implemented by per-
forming independent computations in some of the units
and by passing the computed results to other units. Each
of the processing units performsits computation based on
aweighted sum of itsinputs. In a network, the input units
are grouped as the input layer and the output units are
grouped as the output layer. Other units are grouped into
hidden layers between the input and the output layers. An
activation function is usually used to determine the out-
put of each unit in the hidden and output layers. The
connections between processing units, like synapses
between neurons, are modified by weighting functions.

Artificial neural networks are used in mathematical
modeling to establish the map between system inputs and
outputs. They are especially useful in classical statistical
modeling, which is based on linear model structure and
parameter estimation. However, it is not necessary for
ANN to know how the inputs and outputs are related.
They always establish a relationship between system
input and output as long asthey are related in some way.
So, artificial neural networks are important where a
classical statistical model does not work well.

Fig.2 shows a typical fully connected multilayer

Hidden Output

layer layer
Output
Output
Output

Fig. 2 Sructure of atypical fully connected multilayer feed forward neural networ ki
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feed forward neural network. Thiskind of neural network,
especially with one hidden layer, is popular in solving
problems in food science particularly in food quality
guantification. Artificial sensing systems use ANN to
take the array of sensor outputs as the network input by

feature extraction and to generate the outputs as the in-
dicator of sample classification or attribute values. Arti-
ficial neural networks analyze and differentiate what the
sensors “ see” “hear”, “smdl”, “taste”, and “touch”. Fig.3
isthe general structure of an artificial sensing system.

Sensor
(one of the five
senses)

Feature
extraction

I\
_|/

Pattern recognition
artificial neurd networks

Sample classfication
or quality attribute
prediction

-

Fig. 3 General structure of an artificial sensing system

3 Machinevision

In ageneric machine vision system (Fig.4) the most
common imaging sensor isadigital camera connected to
acomputer. In recent years more exotic imaging methods
have been used, many of which originate from medical
profession. Dual energy X-ray ™, ultrasonic B-mode **
and elastography ™® , Magnetic Resonance Imaging
(MRI) 78 " and Computed Axial Tomography (CAT) [*¥

are afew examples.

A machine vision system has been developed at
Texas A&M University for quantification of snack food
quality . A color digital camera captured images of a
snack product. The image was processed, then texture,
size, and shape features were used asinput to an artificial
neural network to predict sensory attributes of the snack
which could then be used to describe the quality from a
texture (mouth feel) standpoint.

| I Video frame grabbing
AN H -
g I ————) andimageprocessing <::|'>
Camerawith lighting .
—
L 1]
PC
Electronic /mechanical
control
Sample stage

Fig. 4 Sructure of generic machine vision system™
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The image acquisition system (Fig.5) was equipped
with a charged coupled (CCD) color camera that cap-
tured multiple frames (32 images per acquisition) of
512x512 pixels.32 frames were digitized per sample, and
these samples were averaged to reduce noise. 50 images
were acquired for each cell referred as different process

conditions for each of the machine wear/raw material
scenarios. One wear/raw material (see below) scenario
had 16 cells giving 800 (16x50) images. The resolution
was 0.183 mm per pixel. This experiment used the
cross-sectional images of atypical puffed extruded corn
product (Fig.6).

- Video » Image
processor display
i i
Image processor
MC 68000
i
Camera &
lightin
AN amp [ Tamp&
- stage
control
y
Index table Hos computer | Control
Stage 483 PC display

Fig. 5 Schematic diagram of theimaging system for snack food quality quantification 2%

Fig. 6 Cross-section image of a typical snack product 2!

To obtain the morphological features, the images
were thresholded based on their density histograms. The
resulting binary images were then processed by aclasing
morphology operation with a disk structuring element to
obtain size and shape of the snack products®™ which
were described using the following nine features:

(1) Area (AREA) is the number of pixels contained

in a snack object image; this number is converted into a
physical size using the calibration parameter of the
camera.

(2) Perimeter (PERIM) is the number of pixels
along the boundary of a snack object image; the calibra-
tion parameter is used to compute the corresponding
physical length.

(3) Fiber length (FIBERL) and width (FIBERW) are
the length and width of a rectangle respectively sur-
rounding a snack object image.

(49) Chord length (CHORDL) and breadth
(CHORDB) are the longest chord and the shortest chord
respectively passing through a snack object.

(5) Roundness (ROUND) is a shape factor, which
has a minimum value of 1.0 for a circular shape snack.
Large values of roundness indicate thinner and longer
snacks.

(6) Fullnessratio (FULLR) is the ratio of the snack
image area to the circumscribed area.

(7) Aspect ratio (ASPR) is the ratio of the length to
the breadth of a snack object.

Thirteen textural features % were calculated based
on co-occurrence matrices reflecting the spatial distribu-
tion of intensity variations from theimages of the snacks:
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1) Angular second moment (Fy).

2) Contrast (F>).

3) Correlation (Fs3).

4) Variance (Fy).

5) Inverse difference moment (Fs).

6) Sum average (Fg).

7) Sum variance (F7).

8) Sum entropy (Fs).

9) Entropy (Fo).

10) Difference variance (Fyg).

11) Difference entropy (F11).

12) Formation measure of correlation number 1
(F2).

13) Information measure of corrdation number 2
(Fua).

In this way atotal of 22 features,9 morphological
and 13 textural, from snack images were extracted as the
input parameters of the quality quantification to correlate
with 7 sensory attributes as the output parameters that
define the visual quality of the snack products established
by the taste panel: Mbubble @roughness @)cell size @
firmness ®crispiness ®tooth packing (@ grittiness of
mass.

Thetaste panel scaled these sensory attributes in the
range of 3 to 3 with 0 indicating the optimum value.

A one-hidden-layer neural network trained with a
back-propagation algorithm modeled the relationship
between the textural and morphological features and
sensory attributes. The size of the network input layer is
equal to the size of the feature vector, i.e. 22. The size of
the output layer isthe size of the sensory attribute vector,
i.e. 7. The size of the hidden layer is determined by ex-
periment. The number of the hidden nodes was incre-
mented by 1 starting from 1 until the mean square error
reached 0.1%. Thus the optimum number of hidden
nodeswas 9.Therefore; a22x9x7 network was structured.

Table 2 Performance (% classification rate) of neural network on training data

The input values were normalized between 0 and 1.The
output val ues, the taste panel grading from -3 to 3, were
also normalized between 0 and 1.

The conditions of the machine and the raw material
are important in the formation of the snacks. With the
preset conditions, the sample data were used to model the
relationship between the image features and sensory
attributes. The input textural and morphological features
were divided into four machine wear/raw material cate-
gories (A, B, C, and D). A total of 50 sample data vectors
per cell congtituted the training and validation data sets
for neural network classification (Table 1).

Table1l Trainingand validation sample data sets

for different experimental setups'®

Machine wear /raw Number of Number of valida-
material conditions training samples tion samples

A 700 100

B 400 50

Cc 400 50

D 400 100

The performance of the back-propagation trained
neural network was eval uated by defining a classification
rate:

Classification rate %= NWC ><100 D

where NC is the number of correctly classified samples,
and N is the number of total samples.

The classification rates (Tables 2 and 3) are very
high on training data and acceptably good on validation
data. Thusthe combination of textural and morphological
image features is effective in quantifying the sensory
attributes of snack quality with high accuracy from the
neural network model when compared with human ex-

perts.

[20]

Machine wear/raw

Quality/sensory attributes

material conditions Bubble Rough Cell Firm Crisp Tooth Grit
A 96 98 20 94 93 94 97
B 91 91 98 97 96 89 93
C 95 95 94 88 92 91 97
D 99 100 96 96 99 97 98
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Table3 Performance (% classification rate) of neural network on validation data ‘2

Machine wear/raw

Quality/sensory attributes

material conditions g ppje Rough Cell Firm Crisp Tooth Grit
A 92 90 83 88 85 84 94
B 90 98 98 98 94 94 92
C 90 94 86 78 82 82 90
D 90 93 78 95 87 88 90

4 Electronic nose

The olfactory anatomy of humans (Fig.7) can be
simplified (Fig.8, Table 4 in detail). The receptor cells
and cilia are replaced with nonspecific gas sensors that
react to various volatile compounds. The transduction of
the olfactory receptors is replaced with signal condi-
tioning circuits that involve a conversion to voltage.
Coding of the neural signals for intensity and recognition
of odor in humans is replaced by a pattern recognition
method, typically an artificial neural network.

Axon

Receptor cell
Basdl cell eoeptor
Supporting cell
(Bowman's glands)
Pigment Microvilli
Cilia
pomuss L
o Tl Olfactory
" / T mucous
Nasd epithelium
Fig. 7 Schematic of human olfactory organ *"!
- S .
Y N
Va A
Sensors  Signal Data Artificia
conditioning  preprocessing  heural
network

Fig.8 Schematic of generic electronic nose®®”

Table4 Comparison of human nose and eectronic nose™”

Item Humannose  Electronic nose
Number of olfactory 40 million 41032
receptor cellg/'sensors
Area of olfactory 2 2
MUuCOSa/Sensors S om Lem
Diameter of olfactory 40-50 micron 800 micron
receptor cell/sensor
Number of cilia per
olfactory receptor cell 10-3 0
Length of cilia on olfactory 100—150 micron N/A
receptor cell
Concentration for detection 0.000 04 Unknown
threshold of musk mg/literre

Because there is generally no mucus into which the
odorants dissolve, the molecules must adsorb onto the
sensor. A variety of sensors have been employed based
on metal oxides % semiconducting polymers "%,
optical methods!®*"* and quartz resonance!™ . Metal
oxide and semiconducting polymer sensors are the two
most commonly used sensorsin commercial instruments.

An €electronic nose can be used to characterize
foods!***4. Osborn and Lacey at TexasA&M University
developed acommercia electronic nose for detecting off
flavors due to high temperature curing in peanuts 1% *%,
Peanuts were tested in four states of destruction: whole
pods, whole kernels with red skins, half kernels without
red skins, and ground kernels. Off-flavors in ground
kernels were also measured using gas chromatography
(GC) and an organic volatile meter (OVM) for com-
parison with the electronic nose. The electronic nose
sensor array was able to distinguish off flavored peanuts
after some data processing to remove bias. Further, the
electronic nose was able to differentiate between the
samples suggesting this technique could be used for
quality control.
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Fig.9 shows the response of a commercial elec-
tronic nose (Nectronics, Flowery Branch, GA, USA) to
water vapor pressure for a series of ground peanut sam-
ples. The samples were at the same moisture content, and
vapor pressure effects were caused by the absorption
kinetics of the sensors. Fig. 10 shows a sample of the data
collected from a single sensor in the AromaScan

electronic nose on the low temerature cured ground
kernelsfor all 10 test replications. Fig.11 isthe datafrom
the same sensor for the ground kernels cured at high
temperature. Note that the low temperature readings
appear to be generally constant with time, while the high
temperature readings appear to increase as the test pro-
gresses.
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Fig.9 Response of asingle sensor in the Neotronics e ectronic nose to vapor
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Fig.10 Raw AromaScan data from sensor 11, ground kernels, low

temperature curing treatment for 10 replications

Fig.12 shows all replications averaged for all 32
sensors of the AromaScan electronic noseand shows
separation between treatments. T-values were calcu-
lated to compare the data sets combining all sensor
data from the room-temperature and the high- tem-
perature treatments with the electronic nose com-
pared with GC and OVM (Table 5). GC and OVM

[45]

methods have relatively low t-values compared to the
electronic nose because of the variance between
replications for the GC and OVM methods, the
inherent error in these sampling techniques, and the
large number of “internal replications” that can be
obtained from the electronic nose using parallel sen-
sors for asingle test.
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Fig.12 Graphic representation of all replications averaged for
all 32 sensors of the AromaScan dectronic nose !
Table5 Calculated t-valuesfor eectronic noseand for GC and OVM for
detecting off flavor volatilesin ground ker nels !
. Replications
Detection method (room/high) t-value
Electronic nose, ground kernels (20 sensors, 210 s sampling time) 3/3 22.88***
Electronic nose, ground kernels (20 sensors, 60 s sampling time) 3/3 14.66***
GC ethanal 3/3 3.76**
GC acetaldehyde 3/3 11.4%**
GC ethyl acetate 3/3 2.52*
OVM 3/4 3.59**

*Significant at 0.1 level. **Significant at 0.05leved. *
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Artificial neural networks are powerful at coding
the sensor response although the t-test method was ef-
fective. Artificial neural networks model the following
nonlinear relationship between sensor readings and
sampl e classification assignment:

Artificial neural networks are powerful at coding
the sensor response although the t test method was ef-
fective. Artificial neural networks model the following
nonlinear relationship between sensor readings and
sampl e classification assignment:

ézf(xl,xz,---,xn;é) 2
where f(xl,xz,---,xn;é) is the nonlinear function

estimate, © is the set of coefficient et mates,
% (i =1,2,---,n) is the ith sensor response, and n is the
number of the sensors in the specific electronic nose, 12
for Neotronics and 32 for AromaScan.

The el ectronic nose must betrained by presenting it
with known odors. When presented with an odor for
which no training data exist, the e ectronic nose is un-
able to classify the sample. In this aspect, the electronic
noseissimilar to the human sensethat is shaped through
experience.

Determining the structure of a neural network isan
empirical process and time consuming. A trained neural
network can rapidly classify a new series of data for a
particular odor.

5 Electronic tongue

Artificial taste systems have been devel oped 16~

called “electronic tongue” or “ taste sensor”.

An €electronic tongue can use optical methods or
measurements of mass changes of vibrating quartz
crystals. In an electronic tongue based on pulse eec-
trochemical voltametry®**!. The measurement was
carried out by a standard six-electrode configuration.
The current transients due to onset of a voltage pulse can
indicate both the amount and type of charged molecules
and of redox active species. The six working electrodes
were gold, iridium, palladium, platinum, rhenium and
rhodium. There was also an auxiliary eectrode and one
reference electrode. The system was placed in a 150 ml
measurement cell. The response was measured by a
potentiostat connected to a PC via an A-to-D converter.
Fig.13 shows a measurement sequence covering 11

cycles resulting in a final pulse value of —220 mV. The
sequence starts with an applied potential of 800 mV for
0.5s. Thevaltageisthen set to O, the applied potential is
decreased by 100 mV, and the cycle starts again.

800 —=—

700 L | —

600 | —
500 | —
400 +
300
200

Vimv

01 23 4 5 6 78 9101
t/s

Fig.13 A measurement sequence of an electrode of

an electronictongue covering 11 cycles resu-

Itingin afinal pulsevalue of -220mV

Fig.14 shows a typical recording of a full meas-
urement over al electrodes. The samplerateis set to 20
Hz and only the amplitude which has shown to contain
sufficient information, namely from thefirst, second and
last samples in each 0.5 s interval, was used in this ex-
periment. Each electrode measurement is characterized
by 66 samples; hence, atotal tongue measurement conm-
prises 396 samples.

60

66 132 198
Samples

284 330 396
Fig.14 Atypical recording of a full measurement over
all dectrodes of an electronic tongue'™

Current transient responses obtained at different
potentials can be analyzed using pattern recognition
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especially with artificial neural networks. The e ectronic
tongue was able to distinguish liquids such asfruit juices,
still drinks and to follow aging of milk %%, The elec-
tronic tongues are commercially available, such as Taste
Sensing System SA401 of Anritsu Corp. (Japan) and the
Astree Liquid and Taste Analyzer of Alfa MOS
(France).

6 Multi-sensor data fuson

Multisensor data fusion is an emerging technol ogy
is used by department of defense for automated target
recognition. Non-DoD applications include monitoring
of complex machinery, robotics, environmental sur-
veillance and monitoring, medical diagnosis, smart
building and food quality ®*>%. Techniques for data
fusion are drawn from a wide variety of disciplines,
including signal processing, pattern recognition, statis-
tical estimation, artificial intelligence, and control theory.
The rapid evolution of computers, proliferation of
micro-mechanical/electrical systems sensors, and the
maturation of data fusion technology provide a basis for
utilization of data fusion in everyday applications!®.

Multi-sensor data fusion provides an approach to
improving the performance of single sensors. In general
a single sensor system provides a limited measure of
only a single aspect of an object. A machine vision sys-
tembasicaly “ views”” the object toidentify textural and
morphological features™. An acoustic sensor “hears’
the sound from the object. An electronic nose “ smells’
the object and differentiates one object from other with
different gas sensor array signatures . A taste sensor
““tastes”” the object and differentiates between objects
with different taste sensor signatures °*®%. A force sen-
sor basically* “touches’ the object. If these sensorswork
together, the integrated or fused system should be ableto
“seg’, “hear”, “smdl”, “taste’, and/or “touch” the object
and the decision about the object would be based on a
compilation of what it sensed. This idea suggests
developing a computerized sensing system which will
act similarly to human appreciation of food with the
combination or fusion of five senses.

Based on the measurement of each artificial sensor,
the quantified features can be extracted from each sen-
sor’s output and combined as the following vector:

-
F=[ fyfofn | (2<n<5) 3)

wheref; isthefeature vector from anindividual artificial
sensor, version, acoustic, gas, taste and/or force.

How to fuse the information depends on what
sensor systems and information available. For example,
if only theinformation of the gas sensor and taste sensor
is available, the fusion can be as follows:

F= foo fose | 4

If the information of the acoustic sensor, the gas
sensor and the force sensor is available, the fusion can be
done as:

T
F= [ facoustic fgas fforoe ] (5)

This fusion is the foundation of artificial mouth,
which will be described later. Fig.15 shows the structure
of the data fusion with these three sensors.  With the
feature vector asthe input, artificial neural networks are
an appropriate approach to differentiate the data in
which nonlinear relationships exist. The output of the
network is a vector to contain binary values to associate
it with one class. For example, two output nodes of the
network can be used to discriminate the data between
two classes. Each node is associated with one class.
When the data belong to class I, the output vector O =
[1 0]" and when the data belong to class 11, the output
vector O = [0 1]". Integration of advanced statistics and
artificial neural networks is another potential to analyze
the fused data for this application referred to our previ-
ous successes in the integration of partial least square
and artificial neural networks (NNPLS) and principal
component analysis and artificial neural networks
(NNPCA)®.

Acoustic Feature | |
sensor extraction
Artificia neura
Gas Feature |, | Feaure | N
; s network pattern
extraction combination —V/ recognition
Acoustic Feature | |
sensor extraction

Fig.15 Sructureof datafuson of three sensors:
acoustic, gasand force
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An artificial mouth™? was built by combining in-
formation corresponding to three senses “ auditory” by a
microphone, “tactile’ by aforce sensor and ““olfaction””
by a gas sensor array.

A piston in a chamber containing a crisp food
sample was moved at a constant speed by the action of a
stepper motor connected to a lever. A force sensor re-
corded the force applied to the piston, and a microphone
was placed at the bottom of the chamber. Gas samples
from the chamber were led to a sensor array consisting
of 10 MOSFET gas sensors, and four semiconducting
metal oxide type sensors.

The chamber system wastested by estimating aging
of, and classifying, different potato chips by collecting,
analyzing and fusing crunching, hearing and smelling
information(?. The results indicated that i nformation for
touch, smel and sound was not sufficient to follow the
aging process of the chips. But when the individual sets
of information were merged, the aging process can be
clearly followed by the pooled information.

An artificial neural network was able to predict
aging. the nine most significant features, 3 chosen from
each of sensing sources. smell, sound, and touch by
principle component analysis, were fed into the network
astheinput. One output was the aging time. Seven nodes
in the hidden layer were determined. The resulting pre-
diction of aging time versus thetrue aging timeis shown
in Fig.16. Ideally, the prediction should follow the line.

401

30|

20|

Truetime/h

10

10 20 30 40
Prediction time/h

Fig.16 True versus predicted aging time?

Using the same method asfor estimati ng aging time
various potato chips were analyzed and classified satis-
f

An electronic sensor head is a mimic of al five

human senses that makes a complete sensory eval uation
of foods"®'. Thefood samplewas placed into an artificial
mouth to detect resistance to chewing, measure aroma
and record the sound of chewing. A video camera was
used to record color, shape and other properties of the
sample. Finaly, the crushed sample was mixed with a
saline solution, and an electrochemical multi-electrode
arrangement analyzed the mixture.

An artificial head combines the information from
al five sensor systems. visual, acoustic, gaseous, gus-
tatory, and force. Features can be extracted from the
information from each sensor system and combined as
the input for pattern recognition:

F= [ fuision Tacoustic fgas fraste frorce ]T (6)

Artificial neural networks can thus be used to clas-
sify foods and to estimate quality parameters although a
fuzzy classifier was suggested in the description.

This artificia head has been used for quality esti-
mation of crisp products such as crisp bread and chips.
The vision system alone could predict the freshness,
spots and spiciness, the olfactory anal ogue the spiciness,
and the auditory and touch anal ogues the freshness. Thus
the freshness of the chips coul d be determined by change
in color and by change in texture. Also, the spiciness of
the chip could be determined by the smell and by the
number and color of the spices as seen by the camera.
Therefore, if all senses were fused together, all quality
parameters could be predicted.

7 Conclusions

Artificial neural network pattern recognition and
individual and fused sensor systems of artificial senses
can quantify food quality. Machine vision and the elec-
tronic nose are the most successful methods. Electronic
nose systems will be more effective with better under-
standing of the human olfactory system and with more
powerful pattern recognition techniques by artificial
neural networks. Compared with individual sensors,
multi-sensor datafusionisreatively new infood quality
guantification. The artificial head is still in a stage pre-
liminary study. The approaches to multi-sensor data
fusion are still under research. There are different levels
of data fusion. Low level fusion adds signals from dif-
ferent sensors. High level fusion analyzes the features
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from individual sensor systems then associates them to
produce a fused result. The best method to determinethe
level of fusion for different problems in food quality
guantification is still to be determined.
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